Skip to main content
Log in

Characterization of Adsorption Behavior of Sucrose Monolaurate on Gold Substrate Using the Quartz Crystal Microbalance (QCM)

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

One class of biodegradable surfactants, sucrose fatty acid esters (SEs), has attracted wide interest in the food and cosmetic industries due to their excellent biocompatibility, biodegradability and lower pH- and temperature-sensitivity. The objective of this study was to evaluate the adsorption behavior of pure sucrose monolaurate (SML) at the solid–liquid interface as a function of concentration, 0.02–0.5 % w/w, and medium pH, as these can be the pre-determinants of their performance. The quartz crystal microbalance (QCM), an effective and versatile surface adsorption tool with customizable surfaces, was used for the first time in real-time characterization of the adsorption behavior. Adsorption was fast, between 1 and 3 min, with a typical one-step monolayer adsorption mechanism occurring at most concentrations and medium pH used, thus justifying the application of the Sauerbrey equation to determine the deposited mass. The adsorption isotherm was likely Langmuirian and the SML deposition on gold was significantly higher, at and beyond 0.1 % w/w, in de-ionised water (pH 6.9) than in aqueous buffer (physiological pH 5.5) due to the interaction of water molecules with the adsorbed layer. The results from this work highlight the importance of media for studying the adsorption behaviors of SEs and serve as a reference for future investigations on different functionalized surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Savić S, Tamburić S, Savić MM (2010) From conventional towards new–natural surfactants in drug delivery systems design. Exp Opin Drug Deliv 7:353–369

    Article  Google Scholar 

  2. Ward OP, Jianwen F, Zuyi L (1997) Lipase-catalyzed synthesis of a sugar ester containing arachidonic acid. Enzyme Microb Technol 20:52–56

    Article  CAS  Google Scholar 

  3. Rich JO, Bedell BA, Dordick JS (1995) Controlling catalyzed regioselectivity in sugar ester synthesis. Biotechnol Bioeng 45:426–434

    Article  CAS  Google Scholar 

  4. Garti N, Clement V, Leser M, Aserin A, Fanun M (1999) Sucrose ester microemulsions. J Mol Liq 80:253–296

    Article  CAS  Google Scholar 

  5. Szűts A, Szabó-Révész P (2012) Sucrose esters as natural surfactants in drug delivery systems—a mini-review. Int J Pharm 433:1–9

    Article  Google Scholar 

  6. Tadros TF (2005) Applied surfactants: principles and applications. Wiley, Weinheim

    Book  Google Scholar 

  7. Garofalakis G, Murray BS, Sarney DB (2000) Surface activity and critical aggregation concentration of pure sugar esters with different sugar headgroups. J Colloid Interf Sci 229:391–398

    Article  CAS  Google Scholar 

  8. Husband FA, Sarney DB, Barnard MJ, Wilde PJ (1998) Comparison of foaming and interfacial properties of pure sucrose monolaurate, dilaurate and commercial preparations. Food Hydrocolloids 12:237–244

    Article  CAS  Google Scholar 

  9. Soultani S, Ognier S, Engasser J, Ghoul M (2003) Comparative study of some surface active properties of fructose esters and commercial sucrose esters. Colloid Surf A 227:35–44

    Article  CAS  Google Scholar 

  10. Trommer H, Neubert RHH (2006) Overcoming the stratum corneum: the modulation of skin penetration. Skin Pharmacol Physiol 19:106–121

    Article  CAS  Google Scholar 

  11. Csóka G, Marton S, Zelko R, Otomo N, Antal I (2007) Application of sucrose fatty acid esters in transdermal therapeutic systems. Eur J Pharm Biopharm 65:233–237

    Article  Google Scholar 

  12. Ayala-Bravo HA, Quintanar-Guerrero D, Naik A, Kalia YN, Cornejo-Bravo JM, Ganem-Quintanar A (2003) Effects of sucrose oleate and sucrose laureate on in vivo human stratum corneum permeability. Pharm Res 20:1267–1273

    Article  CAS  Google Scholar 

  13. Cázares-Delgadillo J, Naik A, Kalia YN, Quintanar-Guerrero D, Ganem-Quintanar A (2005) Skin permeation enhancement by sucrose esters: a pH-dependent phenomenon. Int J Pharm 297:204–212

    Article  Google Scholar 

  14. Ruddy SB (1995) Surfactants. In: Smith EW, Maibach HI (eds) Percutaneous penetration enhancers. CRC Press Inc., Florida, pp 245–257

    Google Scholar 

  15. Ganem-Quintanar A, Kalia YN, Falson-Rieg F, Buri P (1997) Mechanisms of oral permeation enhancement. Int J Pharm 156:127–142

    Article  CAS  Google Scholar 

  16. Abrams K, Harvell JD, Shriner D, Wertz P, Maibach H, Maibach HI, Rehfeld SJ (1993) Effect of organic solvents on in vitro human skin water barrier function. J Invest Dermatol 101:609–613

    Article  CAS  Google Scholar 

  17. Levang AK, Zhao K, Singh J (1999) Effect of ethanol/propylene glycol on the in vitro percutaneous absorption of aspirin, biophysical changes and the macroscopic barrier properties of the skin. Int J Pharm 181:255–263

    Article  CAS  Google Scholar 

  18. Tehrani-Bagha AR, Holmberg K (2008) Cationic ester-containing gemini surfactants: adsorption at tailor- made surfaces monitored by SPR and QCM. Langmuir 24:6140–6145

    Article  CAS  Google Scholar 

  19. Knag M, Sjöblom J, Øye G, Gulbrandsen E (2004) A quartz crystal microbalance study of the adsorption of quaternary ammonium derivatives on iron and cementite. Colloid Surf A 250:269–278

    Article  CAS  Google Scholar 

  20. Mivehi L, Bordes R, Holmberg K (2013) Adsorption of cationic gemini surfactants at solid surfaces studied by QCM-D and SPR—effect of the presence of hydroxyl groups in the spacer. Colloid Surf A 419:21–27

    Article  CAS  Google Scholar 

  21. Soares DM, Gomes WE, Tenan MA (2007) Sodium dodecyl sulfate adsorbed monolayers on gold electrodes. Langmuir 23:4383–4388

    Article  CAS  Google Scholar 

  22. Song S-H, Koelsch P, Weidner T, Wagner MS, Castner DG (2013) Sodium dodecyl sulfate adsorption onto positively charged surfaces: monolayer formation with opposing headgroup orientations. Langmuir 29:12710–12719

    Article  CAS  Google Scholar 

  23. Karlsson PM, Palmqvist AEC, Holmberg K (2008) Adsorption of sodium dodecyl sulfate and sodium dodecyl phosphate on aluminum, studied by QCM-D, XPS, and AAS. Langmuir 24:13414–13419

    Article  CAS  Google Scholar 

  24. Bordes R, Höök F (2010) Separation of bulk effects and bound mass during adsorption of surfactants probed by quartz crystal microbalance with dissipation: insight into data interpretation. Anal Chem 82:9116–9121

    Article  CAS  Google Scholar 

  25. Stålgren JJR, Eriksson J, Boschkova K (2002) A comparative study of surfactant adsorption on model surfaces using the quartz crystal microbalance and the ellipsometer. J Colloid Interf Sci 253:190–195

    Article  Google Scholar 

  26. Caruso F, Serizawa T, Furlong DN, Okahata Y (1995) Quartz crystal microbalance and surface plasmon resonance study of surfactant adsorption onto gold and chromium oxide surfaces. Langmuir 11:1546–1552

    Article  CAS  Google Scholar 

  27. Caruso F, Rinia HA, Furlong DN (1996) Gravimetric monitoring of nonionic surfactant adsorption from nonaqueous media onto quartz crystal microbalance electrodes and colloidal silica. Langmuir 12:2145–2152

    Article  Google Scholar 

  28. Gutig C, Grady BP, Striolo A (2008) Experimental studies on the adsorption of two surfactants on solid-aqueous interfaces: adsorption isotherms and kinetics. Langmuir 24:4806–4816

    Article  CAS  Google Scholar 

  29. Boschkova K, Stålgren JJR (2002) Cationic and nonionic surfactant adsorption on thiol surfaces with controlled wettability. Langmuir 18:6802–6806

    Article  CAS  Google Scholar 

  30. Urbakh M, Tsionsky V, Gileadi E, Daikhin L (2007) Probing the solid/liquid interface with the quartz crystal microbalance. In: Steinem C, Janshoff A (eds) Piezoelectric sensors: Springer Series on chemical sensors and biosensors. Springer-Verlag, Berlin Heidelberg, Germany, vol 5, part A, p 111–149

  31. Stockbridge CD (1966) Resonance frequency versus mass added to quartz crystals. In: Behrndt KH (ed) Vacuum microbalance techniques, vol 5. Plenum, New York, p 193

    Chapter  Google Scholar 

  32. Kanazawa KK, Gordon JG (1985) The oscillation frequency of a quartz resonator in contact with liquid. Anal Chim Acta 175:99–105

    Article  CAS  Google Scholar 

  33. Clunie JS, Ingram BT (1983) Adsorption of nonionic surfactants. In: Parfitt GD, Rochester CH (eds) Adsorption from solution at the solid/liquid interface. Academic Press, New York, pp 105–152

    Google Scholar 

  34. Zhang L, Somasundaran P (2006) Adsorption of mixtures of nonionic sugar-based surfactants with other surfactants at solid/liquid interfaces I. Adsorption of n-dodecyl-β-d-maltoside with anionic sodium dodecyl sulfate on alumina. J Colloid Interf Sci 302:20–24

    Article  CAS  Google Scholar 

  35. Zhang L, Zhang R, Somasundaran P (2006) Adsorption of mixtures of nonionic sugar-based surfactants with other surfactants at solid/liquid interfaces II. Adsorption of n-dodecyl-β-d-maltoside with a cationic surfactant and a nonionic ethoxylated surfactant on solids. J Colloid Interf Sci 302:25–31

    Article  CAS  Google Scholar 

  36. Ferrer M, Comelles F, Plou FJ, Cruces MA, Fuentes G, Parra JL, Ballesteros A (2002) Comparative surface activities of di- and trisaccharide fatty acid esters. Langmuir 18:667–673

    Article  CAS  Google Scholar 

  37. Vlahov IR, Vlahova PI, Lindhart RJ (1997) Regioselective synthesis of sucrose monoesters as surfactants. J Carbohyd Chem 16:1–10

    Article  CAS  Google Scholar 

  38. Molinier V, Fenet B, Fitremann J, Bouchu A, Queneau Y (2005) PFGSE-NMR study of the self-diffusion of sucrose fatty acid monoesters in water. J Colloid Interf Sci 286:360–368

    Article  CAS  Google Scholar 

  39. Rodahl M, Höök F, Krozer A, Brzezinski P, Kasemo B (1995) Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev Sci Instrum 66:3924

    Article  CAS  Google Scholar 

  40. Sauerbrey GZ (1959) The use of quartz oscillators for weighing thin layers and for microweighing. Phys 155:206–222

    Article  CAS  Google Scholar 

  41. Mecea V, Burcur RV (1979) The mechanism of the interaction of thin films with resonating quartz crystal substrates: the energy transfer model. Thin Solid Films 60:73–84

    Article  Google Scholar 

  42. Penfold J, Staples E, Tucker I (2002) On the consequences of surface treatment on the adsorption of nonionic surfactants at the hydrophilic silica-solution interface. Langmuir 18:2967–2970

    Article  CAS  Google Scholar 

  43. Tiberg F, Brinck J, Grant L (2000) Adsorption and surface-induced self-assembly of surfactants at the solid-aqueous interface. Curr Opin Colloid Int 4:411–419

    Article  Google Scholar 

  44. Cho N-J, Frank CW, Kasemo B, Höök F (2010) Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates. Nat Protoc 5:1096–1106

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Science and Engineering Research Council of A*STAR (Agency for Science, Technology and Research) in Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin W. Kwek.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwek, J.W., Kim, S. Characterization of Adsorption Behavior of Sucrose Monolaurate on Gold Substrate Using the Quartz Crystal Microbalance (QCM). J Surfact Deterg 19, 775–783 (2016). https://doi.org/10.1007/s11743-016-1827-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-016-1827-6

Keywords

Navigation