Skip to main content

Nanoemulsification of Ceramide-2 by Sodium Dilauramidoglutamide Lysine, a Novel Peptide-Based Gemini Surfactant


A novel peptide-based gemini surfactant, namely, sodium dilauramidoglutamide lysine (DLGL) was employed to fabricate a stable nanoemulsion system for the delivery of hydrophobic bioactive ceramide-2 molecules. The phase properties and morphology and stability of the nanoemulsion were investigated by focusing on the interaction between DLGL and ceramide-2 molecules. The investigation of the phase properties of the mixture of DLGL and ceramide-2 by X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopy revealed remarkable reduction in the crystallinity of ceramide-2 due to the presence of DLGL. The spherical shape and nanometer size of nanoemulsions emulsified by DLGL were characterized by scanning electron microscopy and transmission electron microscopy. The nanoemulsions prepared using DLGL exhibited significant improvement in the dispersion stability without any significant changes in the particle sizes even after storing them for a month at 50 °C. The results indicated that DLGL readily associated with ceramide-2 to form a relatively stable structure. The steric hindrance of DLGL and molecular rearrangement of DLGL and ceramide-2 attributed to a break in the continuity of the molecular assembly of ceramide-2, which hampered its crystallinity.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Hoque J, Gonuguntla S, Yarlagadda V, Aswal VK (2014) Effect of amide bonds on the self-assembly of gemini surfactants. R Soc Chem 16:11279–11288

    CAS  Google Scholar 

  2. 2.

    Li R, Yan F, Zhang J, Xu C (2014) The self-assembly properties of a series of polymerizable cationic gemini surfactants: effect of the acryoxyl group. Coll Surf A 444:276–282

    Article  Google Scholar 

  3. 3.

    Perez L, Pinazo A, Pons R, Infante M (2014) Gemini surfactants from natural amino acids. Adv Coll Interface Sci 205:134–155

    CAS  Article  Google Scholar 

  4. 4.

    Li H, Yu C, Chen R, Li J, Li J (2012) Novel ionic liquid-type Gemini surfactants: synthesis, surface property and antimicrobial activity. Coll surf A Physicochem Eng Asp 395:116–124

    CAS  Article  Google Scholar 

  5. 5.

    Parekh P, Varade D, Parikh J, Bahadur P (2011) Anionic–cationic mixed surfactant systems: micellar interaction of sodium dodecyl trioxyethylene sulfate with cationic gemini durfactants. Coll surf A Physicochem Eng Asp 385:111–120

    CAS  Article  Google Scholar 

  6. 6.

    Zhu D, Cheng F, Chen Y, Jiang S (2012) Preparation, characterization and properties of anionic gemini surfactants with long rigid or semi-rigid spacers. Coll surf A Physicochem Eng Asp 397:1–7

    Article  Google Scholar 

  7. 7.

    Tikariha D, Singh N, Satnami ML, Ghosh KK (2012) Physicochemical characterization of cationic gemini surfactants and their effect on reaction kinetics in ethylene glycol-water medium. Coll surf A Physicochem Eng Asp 411:1–11

    CAS  Article  Google Scholar 

  8. 8.

    Tiwari AK, Sowmiya M, Saha SK (2011) Study on premicellar and micellar aggregates of gemini surfactants with hydroxyl substituted spacers in aqueous solution using a probe showing TICT fluorescence properties. J Photochem Photobiol A Chem 223:6–13

    CAS  Article  Google Scholar 

  9. 9.

    Sohrabi B, Bazyari A, Hashemianzadeh M (2010) Effect of ethylene glycol on micellization and surface properties of Gemini surfactant solutions. Coll surf A Physicochem Eng Asp 364:87–93

    CAS  Article  Google Scholar 

  10. 10.

    Wang M, Han Y, Qiao F, Wang Y (2015) Aggregation behavior of a gemini surfactant with a tripeptide spacer. R Soc Chem 11:1517–1524

    CAS  Google Scholar 

  11. 11.

    Hikima T, Tamura Y, Yamawaki Y, Yamamoto M (2013) Skin accumulation and penetration of a hydrophilic compound by a novel gemini surfactant, sodium dilauramidoglutamide lysine. Int J Pharm 443:288–292

    CAS  Article  Google Scholar 

  12. 12.

    Kiguchi S (2008) Study on novel peptide-based gemini amphiphilic compound, Pellicer L-30 and application to the cosmetic. Fragr J 36:67–74

    Google Scholar 

  13. 13.

    Lin L, Ye Y, Chen K (2010) New surfactant for shampoos and conditioners from Presperse. Chem Eng World 10:9

    Google Scholar 

  14. 14.

    Ita KB (2014) Transdermal drug delivery: progress and challenges. J Drug Deliv Sci Technol 3:245–250

    Article  Google Scholar 

  15. 15.

    Valsecchi M, Mauri L, Casellato R, Ciampa MG (2012) Ceramides as possible nutraceutical compounds: characterization of the ceramides of the Moro blood orange (Citrus sinensis). Agric Food Chem 60:10103–10110

    CAS  Article  Google Scholar 

  16. 16.

    Tian Y, Guo Y, Zhang W (2015) Effect of oil type, aliphatic alcohol, ionic surfactants on the formation and stability of ceramide-2 enriched nanoemulsions. J Dispers Sci Technol 37:1115–1122

    Article  Google Scholar 

  17. 17.

    Hatziantoniou S, Deli G, Nikas Y, Demetzos C, Papaioannou GT (2007) Scanning electron microscopy study on nanoemulsions and solid lipid nanoparticles containing high amounts of ceramides. Micron 38:819–823

    CAS  Article  Google Scholar 

  18. 18.

    Watanabe H, Obata Y, Ishida K, Takayama K (2009) Effect of l-menthol on the thermotropic behavior of ceramide 2/cholesterol mixtures as a model for the intercellular lipids in stratum corneum. Coll Surf B Biointerf 73:116–121

    CAS  Article  Google Scholar 

  19. 19.

    Imura T, Sakai H, Yamauchi H (2001) Preparation of liposomes containing Ceramide 3 and their membrane characteristics. Coll Surf B Biointerf 20:1–8

    CAS  Article  Google Scholar 

  20. 20.

    Tokudome Y, Saito Y, Sato F (2009) Preparation and characterization of ceramide-based liposomes with high fusion activity and high membrane fluidity. Coll Surf B Biointerf 73:92–96

    CAS  Article  Google Scholar 

  21. 21.

    Kim D, An EJ, Kim J, Han S (2009) Fabrication and characterization of pseudo-ceramide-based liposomal membranes. Coll Surf B Biointerf 73:207–211

    CAS  Article  Google Scholar 

  22. 22.

    Kim D, Park WR, Kim JH, Cho EC (2012) Fabrication of pseudo-ceramide-based lipid microparticles for recovery of skin barrier function. Coll Surf B Biointerf 94:236–241

    CAS  Article  Google Scholar 

  23. 23.

    Kim MK, Jeong ES, Kim KWN, Park SH (2014) Nanoemulsification of pseudo-ceramide by molecular association with mannosylerythritol lipid. Coll Surf B Biointerf 116:597–602

    CAS  Article  Google Scholar 

  24. 24.

    Li Y, Zheng J, Xiao H, McClements DJ (2012) Nanoemulsion-based delivery systems for poorly water-soluble bioactive compounds: influence of formulation parameters on polymethoxyflavone crystallization. Food Hydrocoll 27:517–528

    CAS  Article  Google Scholar 

  25. 25.

    Ohta N, Hatta I (2002) Interaction among molecules in mixtures of ceramide/stearic acid, ceramide/cholesterol and ceramide/stearic acid/cholesterol. Chem Phys Lip 115:93–105

    CAS  Article  Google Scholar 

  26. 26.

    Al Zoubi OM, Normah MN (2015) Critical moisture content for successful cryopreservation of embryonic axes of Fortunella polyandra determined by differential scanning calorimetry (DSC). Acta Physiol Plant 37:1727

    Article  Google Scholar 

  27. 27.

    Kumar S, Randhawa JK (2014) Paliperidone-loaded spherical solid lipid nanoparticles. R Soc Chem 4:30186–30192

    CAS  Google Scholar 

  28. 28.

    Kim H, Lim JK, Kim D, Lim ST (2014) Formation of crystalline complexes between amylomaize dextrin and ceramide. Carbohydr Polym 101:407–414

    CAS  Article  Google Scholar 

  29. 29.

    Kim S, Stebe MJ, Blin JL Pasc A (2014) pH-controlled delivery of curcumin from a compartmentalized solid lipid nanoparticle@mesostructured silica matrix. Journal of Material Chemistry B 2:7910–7917

  30. 30.

    McClements DJ (2011) Edible nanoemulsions: fabrication, properties, and functional performance. R S Chem 7:2297–2316

    CAS  Google Scholar 

  31. 31.

    Klang V, Matsko NB, Valenta C, Hofer F (2012) Electron microscopy of nanoemulsions: an essential tool for characterisation and stability assessment. Micron 43:85–103

    CAS  Article  Google Scholar 

  32. 32.

    Severino P, Helena M, Santana A, Souto EB (2012) Optimizing SLN and NLC by 22 full factorial design: effect of homogenization technique. Mater Sci Eng, C 32:1375–1379

    CAS  Article  Google Scholar 

  33. 33.

    Zhang WP, Chen LH, Fang X (2014) Optimizing the preparation conditions for shea butter nanoemulsions via response surface methodology. J Dispers Sci Technol 36:983–990

    CAS  Article  Google Scholar 

  34. 34.

    Meleson K, McClements DJ (2004) Formation of concentrated nanoemulsions by extreme shear. Soft Mater 2:109–123

    CAS  Article  Google Scholar 

  35. 35.

    Yang Y, Leser ME, Sher A (2013) Formation and stability of emulsions using a natural small molecule surfactant: Guillaja saponin. Food Hydrocoll 30:589–596

    CAS  Article  Google Scholar 

Download references


The authors would like to thank Mrs. Hu Jing for the DSC measurements and Mr. Zhu Guangyong for the TEM observation.

Author information



Corresponding author

Correspondence to Wanping Zhang.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Guo, Y., Yang, X. et al. Nanoemulsification of Ceramide-2 by Sodium Dilauramidoglutamide Lysine, a Novel Peptide-Based Gemini Surfactant. J Surfact Deterg 19, 653–661 (2016).

Download citation


  • Sodium dilauramidoglutamide lysine
  • Ceramide-2
  • Crystallinity
  • Nanoemulsions