Skip to main content

Formation and Phase Behavior of Winsor Type III Jatropha curcas-Based Microemulsion Systems

Abstract

The formation and phase behavior of Jatropha curcas-based microemulsion systems, which could potentially be used in enhanced oil recovery applications, has been investigated. Winsor type III microemulsions were obtained by adding n-octane to Winsor type I microemulsion systems prepared using various concentrations of alkyl polyglucoside (APG). To optimize the formulation of type III microemulsion systems, five different types of co-surfactants, i.e. normal butyl alcohol (NBA), isobutyl alcohol, isopropyl alcohol, fatty acid alcohol C8 (FAC8) and fatty acid alcohol C8/C10 (FAC8/C10) were used. The microemulsion phase behavior was determined along with particle size distributions by dynamic light scattering measurements. Results show that the optimum Winston type III system can be achieved by mixing 3 wt% of NBA, 1 wt% APG and 3 wt% NaCl. At the optimum formulation, the IFT reached a minimum value (0.016 mN/m) and formed very small emulsion droplets with a narrow particle size distribution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Yu J, Khalil M, Liu N, Lee R (2014) Effect of particle hydrophobicity on CO2 foam generation flow behavior in porous media. Fuel 126:104–108

    CAS  Article  Google Scholar 

  2. 2.

    Alvarado V, Manrique E (2010) Enhanced oil recovery: an update review. Energies 3:1529–1575

    Article  Google Scholar 

  3. 3.

    Santana VC, Curbelo FDS, Dantas TNC, Neto AAD, Albuquerque HS, Garnica AIC (2009) Microemulsion flooding for enhanced oil recovery. J Pet Sci Eng 66:117–120

    Article  Google Scholar 

  4. 4.

    Kessel DG (1989) Chemical flooding-status report. J Pet Sci Eng 2:81–101

    Article  Google Scholar 

  5. 5.

    Jeirani Z, Jan BM, Ali BS, Noor I, See C, Saphanuchart W (2013) Formulation and phase behavior study of a nonionic triglyceride microemulsion to increase hydrocarbon production. Ind Crops Prod 43:15–24

    CAS  Article  Google Scholar 

  6. 6.

    Jeirani Z, Jan BM, Ali BS, Noor I, See C, Saphanuchart W (2013) Formulation, optimization and application of triglyceride microemulsion in enhanced oil recovery. Ind Crops Prod 43:6–14

    CAS  Article  Google Scholar 

  7. 7.

    Nazar MF, Shah SS, Khosa MA (2011) Microemulsion in enhanced oil recovery: a review. Pet Sci Technol 29:1353–1365

    CAS  Article  Google Scholar 

  8. 8.

    Komesvarakul N, Sanders MD, Szekeres E, Acosta EJ, Faller JF, Mentlik T, Fisher LB, Nicoll G, Sabatini DA, Scamehorn JF (2006) Microemulsions of triglyceride-based oils: the effect of co-oil and salinity on phase diagrams. J Cosmet Sci 55:309–325

    Google Scholar 

  9. 9.

    Huh C (1979) Interfacial tensions and solubilizing ability of a microemulsion phase that coexists with oil and brine. J Colloid Interface Sci 71:408–426

    CAS  Article  Google Scholar 

  10. 10.

    De Caritat P, Lavitt N, Kirste D, Grimley M (2006) Groundwater composition in the Cannington region, Australia: mixing, water–rock interaction and applications to mineral exploration. Geochim Cosmochim Acta 70:A134

    Article  Google Scholar 

  11. 11.

    Austad T, Strand S (1996) Chemical flooding of oil reservoirs 4. Effects of temperature and pressure on the middle phase solubilization parameters close to optimum flood conditions. Colloids Surf A 108:243–252

    CAS  Article  Google Scholar 

  12. 12.

    Mandal A, Samanta A, Bera A, Ojha K (2010) Characterization of oil-water microemulsion and its use in enhanced oil recovery. Ind Eng Chem Res 49:12756–12761

    CAS  Article  Google Scholar 

  13. 13.

    Guillen V, Carvalho M, Alvarado V (2012) Pore scale and macroscopic displacement mechanisms in microemulsion flooding. Transp Porous Media 94:197–206

    CAS  Article  Google Scholar 

  14. 14.

    Bera A, Ojha K, Mandal A, Kumar T (2011) Interfacial tension and phase behavior of surfactant-brine-oil system. Colloids Surf A 383:114–119

    CAS  Article  Google Scholar 

  15. 15.

    Hellweg T (2002) Phase structures of microemulsions. Curr Opin Colloid Interface Sci 7:50–56

    CAS  Article  Google Scholar 

  16. 16.

    Warisnoicharoen W, Lansley A, Lawrence M (2000) Nonionic oil-in-water microemulsions: the effect of oil type on phase behaviour. Int J Pharm 198:7–27

    CAS  Article  Google Scholar 

  17. 17.

    Do LD, Withayyapayanon A, Harwell JH, Sabatini DA (2009) Environmentally friendly vegetable oil microemulsions using extended surfactants and linkers. J Surfact Deterg 12:91–99

    CAS  Article  Google Scholar 

  18. 18.

    Fanun M (2010) Formulation and characterization of microemulsions based on mixed nonionic surfactants and peppermint oil. J Colloid Interface Sci 343:496–503

    CAS  Article  Google Scholar 

  19. 19.

    Phan TT, Attaphong C, Sabatini DA (2011) Effect of extended surfactant structure on interfacial tension and microemulsion formation with triglycerides. J Am Oil Chem Soc 88:1223–1228

    CAS  Article  Google Scholar 

  20. 20.

    Szekeres E, Acosta E, Sabatini DA, Harwell JH (2006) Modeling solubilization of oil mixtures in anionic microemulsions: II. Mixtures of polar and non-polar oils. J Colloid Interface Sci 294:222–233

    CAS  Article  Google Scholar 

  21. 21.

    Singla M, Patanjali P (2013) Phase behavior of neem oil based microemulsion formulations. Ind Crops Prod 44:421–426

    CAS  Article  Google Scholar 

  22. 22.

    Koh MY, Ghazi TIM (2011) A review of biodiesel production from Jatropha curcas L. oil. Renew Sustain Energ Rev 15:2240–2251

    CAS  Article  Google Scholar 

  23. 23.

    Edrisi SA, Dubey RK, Tripathi V, Bakshi M, Srivastava P, Jamil S, Singh HB, Singh N, Abhilash PC (2015) Jatropha curcas L.: a crucial plant waiting for resurgence. Renew Sustain Energ Rev 41:855–862

    Article  Google Scholar 

  24. 24.

    Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): a review. Ind Crops Prod 28:1–10

    CAS  Article  Google Scholar 

  25. 25.

    Couper A, Newton R, Nunn C (1983) A simple derivation of Vonnegut’s equation for the determination of interfacial tension by the spinning drop technique. Coll Polym Sci 261:371–372

    CAS  Article  Google Scholar 

  26. 26.

    Hu HH, Joseph DD (1994) Evolution of a liquid drop in a spinning drop tensiometer. J Coll Interface Sci 162:331–339

    CAS  Article  Google Scholar 

  27. 27.

    Jawitz JW, Annable MD, Rao PSC, Rhue RD (1998) Field implementation of a Winsor type I surfactant/alcohol mixture for in situ solubilization of a complex LNAPL as a single-phase microemulsion. Environ Sci Technol 32:523–530

    CAS  Article  Google Scholar 

  28. 28.

    Bera A, Mandal A (2015) Microemulsions: novel approach to enhanced oil recovery: a review. J Pet Explor Prod Technol 5:255–268

    CAS  Article  Google Scholar 

  29. 29.

    Komesvarakul N, Sanders MD, Szekeres E, Acosta EJ, Faller JF, Mentlik T, Fisher LB, Nicoli G, Sabatini DA, Scamehorn JF (2006) Microemulsion of triglyceride-based oils: the effect of co-oil and salinity on phase diagrams. J Cosmet Sci 55:309–325

    Google Scholar 

  30. 30.

    Graciaa A, Lachaise J, Cucuphat C, Bourrel M, Salager JL (1993) Improving solubilization in microemulsion with additives. 1. The lipophilic linker role. Langmuir 9:669–672

    CAS  Article  Google Scholar 

  31. 31.

    Acosta E, Mai PD, Harwell JH, Sabatini DA (2003) Linker-modified microemulsions for a variety of oils and surfactants. J Surfact Deterg 6:353–363

    CAS  Article  Google Scholar 

  32. 32.

    Salager JL, Graciaa A, Lachaise J (1998) Improving solubilization in microemulsion with additives. part III: lipophilic linker optimization. J Surfact Deterg 1:403–406

    CAS  Article  Google Scholar 

  33. 33.

    Uchiyama H, Acosta E, Tran S, Sabatini DA, Harwell JH (2000) Supersolubilization in chlorinated enhancement by lipophilic and hydrophilic linker. Ind Eng Chem Res 39:2704–2708

    CAS  Article  Google Scholar 

  34. 34.

    Leung R, Shah DO (1987) Solubilization and phase equilibria of water-in-oil microemulsion: II. Effect of alcohols, oils, and salinity on single-chained surfactant systems. J Colloid Interf Sci 120:330–344

    Article  Google Scholar 

  35. 35.

    Salager JL, Morgan JC, Schechter RA, Wade WH, Vasquez E (1979) Optimum formulation of surfactant/water/oil systems for minimum interfacial tension or phase behavior. SPE J 19:107–115

    Article  Google Scholar 

  36. 36.

    Pasquali RC, Taurozzi MP, Bregni C (2008) Some consideration about the hydrophilic-lipophilic balance system. Int J Pharm 356:44–51

    CAS  Article  Google Scholar 

  37. 37.

    Sajjadi S, Jahanzad F, Yianneskis M, Brooks BW (2003) Phase inversion in abnormal O/W/O emulsion. 2. Effect of surfactant hydrophilic-lipophilic balance. Ind Eng Chem Res 42:3571–3577

    CAS  Article  Google Scholar 

  38. 38.

    Wu Y, Cheng H, Childs JD, Sabatini DA (2001) Surfactant-enhanced removal of hydrophobic oils from source zones. In: Smith JA, Burns SE (eds) Physicochemical groundwater remediation. Plenum Publishers, New York, p 246

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from University of Malaya Research Grant (UMRG) RP016-2012F, UM Post Graduate Grant PG099-2014A, University of Malaya Research Grant (UMRG) RP031B-15AFR, and High Impact Research (HIR) Grant, UM.C/625/1/HIR/MOE/ENG/15 (HIR-D000015-16001).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Munawar Khalil or Badrul Mohamed Jan.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nordiyana, M.S.W., Khalil, M., Jan, B.M. et al. Formation and Phase Behavior of Winsor Type III Jatropha curcas-Based Microemulsion Systems. J Surfact Deterg 19, 701–712 (2016). https://doi.org/10.1007/s11743-016-1814-y

Download citation

Keywords

  • Microemulsion
  • Phase behavior
  • Winsor type III
  • Jatropha curcas
  • Interfacial tension