Skip to main content
Log in

Shear-Induced Structural Transitions in a Model Fabric Softener Containing an Esterquat Surfactant

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Processing conditions must be rigorously controlled in the production of fabric softener because mechanical energy input during the mixing operation may provoke undesirable structural transitions. Hence, ability to control and modify rheological properties of surfactant systems is an important pre-requisite for many applications of surfactant formulations. Mixtures of a commercial cationic esterquat-type surfactant and different concentrations of salt (CaCl2) were rheologically and microscopically characterized. Shear-induced microstructural transitions have been studied in order to control the formation of vesicles, which is undesirable. The addition of salt allows viscosity to be adjusted and provoked a lack of viscoelastic properties. In addition, a shear thickening effect above a specific value of critical shear rate, which is different for each salt concentration, was observed. This is related to the transition from lamellar bilayer to vesicles. This fact was confirmed by hysteresis-loop experiments, which showed apparent antithixotropic behaviour. Start-up flow tests indicated that a minimum value for shear rate and a certain shear time are needed for the formation of shear-induced structures. After this test, the systems showed viscoelastic properties due to the formation of vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schindler WD, Hauser PJ (2000) Chemical finishing of textile. Woodhead Publishing, Cambridge

    Google Scholar 

  2. Ponsati O (1992) In: Jorn Com Esp Deterg. Vol 23, Comité Español de la Detergencia, Tensioactivos y Afines, Barcelona, 167–180

  3. Pi R, Bonastre N, Copete T, Prat E (1997) In: JornCom Esp Deterg. Vol 27, Comité Español de la Detergencia Tensioactivos y Afines, Barcelona, 257–268

  4. Mishra S, Tyagi VK (2007) Esterquats: the novel class of cationic fabric softeners. J Oleo Sci 56:269–276. doi:10.5650/jos.56.269

    Article  CAS  Google Scholar 

  5. Reif I, Mulqueen M, Blankschtein D (2001) Molecular-thermodynamic prediction of critical micelle concentrations of commercial surfactants. Langmuir 17:5801–5812. doi:10.1021/la0105578

    Article  CAS  Google Scholar 

  6. Abe M (2014) Mixed surfactant system, vol 124. CRC Press, Boca Raton

    Google Scholar 

  7. Berret JF, Gamez-Corrales R, Lerouge S, Decruppe JP (2000) Shear-thickening transition in surfactant solutions: new experimental features from rheology and flow birefringence. Eur Phys J E Soft Matter Biol Phys 2:343–350. doi:10.1007/s101890050016

    Article  CAS  Google Scholar 

  8. Lu B, Zheng Y, Davis HT, Scriven LE, Talmon Y, Zakin JL (1998) Effect of variations in counterion to surfactant ratio on rheology and microstructures of drag reducing cationic surfactant systems. Rheol Acta 37:528–548. doi:10.1007/s003970050140

    Article  CAS  Google Scholar 

  9. Bergins C, Nowak M, Urban M (2001) The flow of a dilute cationic surfactant solution past a circular cylinder. Exp Fluids 30:410–417. doi:10.1007/s003480000218

    Article  CAS  Google Scholar 

  10. Haas S, Hoffmann H, Thunig C, Hoinkis E (1999) Phase and aggregation behaviour of double-chain cationic surfactants from the class of N-alkyl-N-alkyl′-N, N-dimethylammonium bromide surfactants. Colloid Polym Sci 277:856–867. doi:10.1007/s003960050462

    Article  CAS  Google Scholar 

  11. Partal P, Kowalski AJ, Machin D, Kiratzis N, Berni MG, Lawrence CJ (2001) Rheology and microstructural transitions in the lamellar phase of a cationic surfactant. Langmuir 17:1331–1337. doi:10.1021/la0007731

    Article  CAS  Google Scholar 

  12. Medronho B, Shafaei S, Szopko R, Miguel MG, Olsson U, Schmidt C (2008) Shear-induced transitions between a planar lamellar phase and multilamellar vesicles: continuous versus discontinuous transformation. Langmuir 24:6480–6486. doi:10.1021/la800326a

    Article  CAS  Google Scholar 

  13. Medronho B, Miguel MG, Olsson U (2007) Viscoelasticity of a nonionic lamellar phase. Langmuir 23:5270–5274. doi:10.1021/la063599a

    Article  CAS  Google Scholar 

  14. Kinzel S, Gradzielski M (2008) Control of phase behavior and properties of vesicle gels by admixing ionic surfactants to the nonionic surfactant Brij 30. Langmuir 24:10123–10132. doi:10.1021/la801452z

    Article  CAS  Google Scholar 

  15. Yan Y, Xiong W, Li X, Lu T, Huang J, Li Z, Fu H (2007) Molecular packing parameter in bolaamphiphile solutions: adjustment of aggregate morphology by modifying the solution conditions. J Phys Chem B 111:2225–2230. doi:10.1021/jp065235x

    Article  CAS  Google Scholar 

  16. Showell M (2005) Handbook of detergents, part D: formulation, vol 128. CRC Press, Boca Ratón

    Book  Google Scholar 

  17. Zoller U (2008) Handbook of detergents, part E: applications, vol 141. CRC Press, Boca Ratón

    Book  Google Scholar 

  18. Smulders E (2002) Laundry detergents. Wiley, New York

    Google Scholar 

  19. Calero N, Alfaro MC, Lluch MA, Berjano M, Muñoz J (2010) Rheological behavior and structure of a commercial esterquat surfactant aqueous system. Chem Eng Tech 33:481–488. doi:10.1002/ceat.200900496

    Article  CAS  Google Scholar 

  20. Mezger TG (2006) The rheology handbook: for users of rotational and oscillatory rheometers, 2nd edn. Vincentz Network GmbH & Co KG, Hannover

    Google Scholar 

  21. Hoffman H (1994) Structure and flow in surfactant solutions. ACS Symp Ser 578:2–31

    Article  Google Scholar 

  22. Leon A, Bonn D, Meunier J, Al-Kahwaji A, Greffier O, Kellay H (2000) Coupling between flow and structure for a lamellar surfactant phase. Phys Rev Lett 84:1335–1338. doi:10.1103/PhysRevLett.84.1335

    Article  CAS  Google Scholar 

  23. Kawabata Y, Ichiguchi K, Ando T, Kato T (2014) Vesicle formations at critical vesicle concentration in a polyoxyethylene type nonionic surfactant system. Colloids Surf A 462:179–185. doi:10.1016/j.colsurfa.2014.09.009

    Article  CAS  Google Scholar 

  24. Bergenholtz J, Wagner NJ (1996) Formation of AOT/brine multilamellar vesicles. Langmuir 12:3122–3126. doi:10.1021/la950696n

    Article  CAS  Google Scholar 

  25. Schmidt G, Müller S, Schmidt C, Richtering W (1998) Rheo-optical investigations of lyotropic mesophases of polymeric surfactants. Rheol Acta 38:486–494. doi:10.1007/s003970050201

    Article  Google Scholar 

  26. Zipfel J, Berghausen J, Lindner P, Richtering WJ (1999) Influence of shear on lyotropic lamellar phases with different membrane defects. J Phys Chem B 103:284–2849. doi:10.1021/jp983917h

    Article  Google Scholar 

  27. Bergmeier M, Gradzielski M, Hoffmann H, Mortensen KJ (1999) Behavior of ionically charged lamellar systems under the influence of a shear field. J Phys Chem B 103:1605–1917. doi:10.1021/jp983480d

    Article  CAS  Google Scholar 

  28. Calero N, Sanromán M, Muñoz J, Berjano M (2006) In: JornCom Esp Deterg. Comité Español de la Detergencia Tensioactivos y Afines, Barcelona 36: 255–266

  29. Nan YQ, He SQ, Liu MN, He HY, Hao LS (2013) The influence of inorganic salts on the rheological properties of 1,3-propanediyl bis(dodecyl dimethylammonium bromide) and sodium dodecylsulfonate aqueous mixed system. Colloid Surf A 436:158–169. doi:10.1016/j.colsurfa.2013.06.032

    Article  CAS  Google Scholar 

  30. Oswald P, Allain M (1988) Rheology an structural defects in a lyotropic lamellar phase. J Colloid Interf Sci 126(1):45–53. doi:10.1016/0021-9797(88)90097-5

    Article  CAS  Google Scholar 

  31. Tuan NA, Mizunuma H (2013) Advection of shear-induced surfactant threads and turbulent drag reduction. J Rheol 57:1819–1832. doi:10.1122/1.4826543

    Article  Google Scholar 

  32. Manosroi A, Wongtrakul P, Manosroi J, Sakai H, Sugawara F, Yuasa M, Abe M (2003) Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol. Colloids Surf B 30:129–138. doi:10.1016/S0927-7765(03)00080-8

    Article  CAS  Google Scholar 

  33. Medronho B, Fujii S, Richtering W, Miguel MG, Olsson U (2005) Reversible size of shear-induced multi-lamellar vesicles. Colloid Polym Sci 284:317–321. doi:10.1007/s00396-005-1367-5

    Article  CAS  Google Scholar 

  34. Goldszal A, Jamieson AM, Mann JA Jr, Polak J, Rosenblatt C (1996) Rheology, optical microscopy, and electron microscopy of cationic surfactant gels. J Colloid Interf Sci 180:261–268. doi:10.1006/jcis.1996.0298

    Article  CAS  Google Scholar 

  35. Barnes HA (1997) Thixotropy—a review. J Non-Newton Fluid 70:1–33. doi:10.1016/S0377-0257(97)00004-9

    Article  CAS  Google Scholar 

  36. Yuan Z, Hao J, Hoffmann H (2006) A promising system of mixed single- and double-short-tailed PEO ether phosphate esters: phase behavior and vesicle formation. J Colloid Interface Sci 302:673–681. doi:10.1016/j.jcis.2006.06.059

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was conducted within the frame of the “Cátedra de Detergencia” of the University of Seville, sponsored by PERSAN, S.A. The authors are grateful for the support received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuria Calero.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calero, N., Santos, J., Berjano, M. et al. Shear-Induced Structural Transitions in a Model Fabric Softener Containing an Esterquat Surfactant. J Surfact Deterg 19, 609–617 (2016). https://doi.org/10.1007/s11743-016-1808-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-016-1808-9

Keywords

Navigation