Journal of Surfactants and Detergents

, Volume 19, Issue 3, pp 543–552 | Cite as

Micellar Properties for Propoxylated Surfactants in Water/Alcohol Solvent Mixtures and Their Antibacterial and Polyester Fabric Antistatic Performances

  • Yongqiang Sun
  • Chao Wang
  • Wanxu Wang
  • Xiuquan Yang
  • Martino Di Serio
  • Lifei Zhi
Original Article


Two propoxylated quaternary amine surfactants characterized by two and six average PO adduct numbers (PO-2 and PO-6 QA surfactants) were synthesized to investigate the micellar properties of propoxylated cationic surfactants in water/alcohol mixtures. The effect of PPO groups on micelle formation was explored using conductivity, UV–vis spectroscopy, dynamic light scattering techniques. Regular or reverse micellization occur with water or alcohol rich solvent mixtures, respectively. For intermediate composition no micellization occurs. Also the performances in antibacterial and antistatic fabrics were studied. PO-2 QA surfactant has excellent antibacterial activities against both the Gram-negative bacterium Escherichia coli and the Gram-positive bacterium Staphylococcus aureus while both surfactants have good antistatic activity over polyester fabric.


Micellar properties Cationic propoxylate surfactant Water/alcohol mixtures Antibacterium Polyester fabric antistatic property 



The authors acknowledge the financial support by the International Science and Technology Cooperative Project of China (No. 2013DFA42120), National Science and Technology support projects (No. 2014BAE03B04 and 2014BAE03B03), International Science and Technology Cooperative Project of Shanxi province (No. 2015081046).


  1. 1.
    Bagshaw SA, Prouzet E, Pinnavaia TJ (1995) Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science 269:1242–1244CrossRefGoogle Scholar
  2. 2.
    Castronuovo CC, Cuestas ML, Oubiña JR, Mathet VL (2015) Effect of several PEO–PPO amphiphiles on bax, bcl-2, and hTERT mRNAs: an insight into apoptosis and cell immortalization induced in hepatoma cells by these polymeric excipients. Biotechnol Appl Bioc 3:1–8CrossRefGoogle Scholar
  3. 3.
    Bromberg L, Temchenko M (1999) Self-assembly in aqueous solutions of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)-b-poly(vinyl alcohol). Langmuir 15:8633–8639CrossRefGoogle Scholar
  4. 4.
    Du YZ, Weng Q, Yuan H, Hu FQ (2010) Synthesis and antitumor activity of stearate-g-dextran micelles for intracellular doxorubicin delivery. ACS Nano 4:6894–6902CrossRefGoogle Scholar
  5. 5.
    Orlich B, Schomäcker R (2002) Enzyme catalysis in reverse micelles. History and trends in bioprocessing and biotransformation. Springer, Berlin, Heidelberg, pp 185–208CrossRefGoogle Scholar
  6. 6.
    Taleb A, Petit C, Pileni MP (1997) Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: a way to 2D and 3D self-organization. Chem Mater 9:950–959CrossRefGoogle Scholar
  7. 7.
    Leser ME, Luisi PL, Paimieri S (1989) The use of reverse micelles for the simultaneous extraction of oil and proteins from vegetable meal. Biotechnol Bioeng 34:1140–1146CrossRefGoogle Scholar
  8. 8.
    Arscott PG, Ma C, Wenner JR, Bloomfield VA (1995) DNA condensation by cobalt hexaammine (III) in alcohol–water mixtures: dielectric constant and other solvent effects. Biopolymers 36:345–364CrossRefGoogle Scholar
  9. 9.
    Gonzalez-Perez A, Del Castillo JL, Czapkiewicz J (2001) Conductivity, density, and adiabatic compressibility of dodecyldimethylbenzylammonium chloride in aqueous solutions. J Phys Chem B 105:1720–1724CrossRefGoogle Scholar
  10. 10.
    Carpena P, Aguiar J, Bernaola-Galván P, Carnero Ruiz C (2002) Problems associated with the treatment of conductivity-concentration data in surfactant solutions: simulations and experiments. Langmuir 18:6054–6058CrossRefGoogle Scholar
  11. 11.
    Barth HG, Flippen RB (1995) Particle size analysis. Anal Chem 67:257R–272RCrossRefGoogle Scholar
  12. 12.
    Riter RE, Kimmel JR, Undiks EP (1997) Novel reverse micelles partitioning nonaqueous polar solvents in a hydrocarbon continuous phase. J Phys Chem B 101:8292–8297CrossRefGoogle Scholar
  13. 13.
    Shrestha LK, Shrestha RG, Aramaki K, Yoshikawa G, Ariga K (2013) Demonstration of solvent-induced one-dimensional nonionic reverse micelle growth. J Phys Chem Lett 4:2585–2590CrossRefGoogle Scholar
  14. 14.
    Zhu DM, Schelly ZA (1992) Investigation of the microenvironment in Triton X-100 reverse micelles in cyclohexane, using methyl orange as a probe. Langmuir 8:48–50CrossRefGoogle Scholar
  15. 15.
    Dizman B, Elasri MO, Mathias LJ (2006) Synthesis and antibacterial activities of water-soluble methacrylate polymers containing quaternary ammonium compounds. J Polym Sci Pol Chem 44:5965–5973CrossRefGoogle Scholar
  16. 16.
    Dizman B, Elasri MO, Mathias LJ (2004) Synthesis and antimicrobial activities of new water-soluble bis-quaternary ammonium methacrylate polymers. J Appl Polym Sci 94:635–642CrossRefGoogle Scholar
  17. 17.
    Wilk KA, Poźniak R, Sokoŀowski A (2000) Antistatic and wetting properties of chemodegradable cationic surfactants containing 1,3-dioxolane moiety. J Surfactants Deterg 3:207–211CrossRefGoogle Scholar
  18. 18.
    Goncharenko AV, Lozovski VZ, Venger EF (2000) Lichtenecker’s equation: applicability and limitations. Opt Commun 174:19–32CrossRefGoogle Scholar
  19. 19.
    Southall NT, Dill KA, Haymet ADJ (2002) A view of the hydrophobic effect. J Phys Chem B 106:521–533CrossRefGoogle Scholar
  20. 20.
    Fidler J, Rodger PM (1999) Solvation structure around aqueous alcohols. J Phys Chem B 103:7695–7703CrossRefGoogle Scholar
  21. 21.
    Aramaki K, Olsson U, Yamaguchi Y (1999) Effect of water-soluble alcohols on surfactant aggregation in the C12EO8 system. Langmuir 15:6226–6232CrossRefGoogle Scholar
  22. 22.
    Michor EL, Berg JC (2014) Micellization behavior of aerosol OT in alcohol/water systems. Langmuir 30:12520–12524CrossRefGoogle Scholar
  23. 23.
    Hollamby MJ, Tabor R, Mutch KJ (2008) Effect of solvent quality on aggregate structures of common surfactants. Langmuir 24:12235–12240CrossRefGoogle Scholar
  24. 24.
    Zhang HL, Kong Z, Yan YM (2007) Microcalorimetric study of the influence of alcohols on the critical micelle concentration and thermodynamic functions of nonaqueous micelle solutions at 298.15 K. J Chem Eng Data 53:327–330CrossRefGoogle Scholar
  25. 25.
    Sarkar B, Alexandridis P (2010) Alkyl propoxy ethoxylate “Graded” surfactants: micelle formation and structure in aqueous solutions. J Phys Chem B 114:4485–4494CrossRefGoogle Scholar
  26. 26.
    Gradzielski M, Hoffmann H, Robisch P (1990) The aggregation behaviour of silicone surfactants in aqueous solutions. Tenside Surfact Det 27:366–379Google Scholar
  27. 27.
    Correa NM, Silber JJ, Riter RE (2012) Nonaqueous polar solvents in reverse micelle systems. Chem Rev 112:4569–4602CrossRefGoogle Scholar
  28. 28.
    Wçgrzyńska J, Chlebicki J (2006) Preparation, surface-active and antielectrostatic properties of multiple quaternary ammonium salts. J Surfact Deterg 9:221–226CrossRefGoogle Scholar

Copyright information

© AOCS 2016

Authors and Affiliations

  • Yongqiang Sun
    • 1
  • Chao Wang
    • 1
  • Wanxu Wang
    • 1
  • Xiuquan Yang
    • 1
  • Martino Di Serio
    • 2
  • Lifei Zhi
    • 1
  1. 1.China Research Institute of Daily Chemical IndustryTaiyuanPeople’s Republic of China
  2. 2.Department of Chemical SciencesUniversity of Naples FedericoNaplesItaly

Personalised recommendations