Abstract
Poorly water-soluble calix[4]resorcinarenes modified with amino acid (Ala, Val) at the upper rim formed a water-soluble mixed system with micelles of monocationic surfactants cetyltrimethylammonium bromide, cetyldimethyl(2-hydroxyethyl)ammonium bromide, and dicationic (gemini) surfactants, alkanediyl-α,ω-bis(dimethyltetradecylammonium bromides (14-s-14, where s = 2, 4, or 6). UV–Vis and DLS methods demonstrated that the micellar systems of surfactant/functionalized calix[4]resorcinarene underwent structural changes within a relatively narrow concentration range followed by changes in solubilization capacity and polydispersity. Gemini surfactants and monocationic/gemini mixed surfactant systems were provided selectivity in their interaction with calix[4]resorcinarene depending on the bulkiness of the substituent at the upper rim of calix[4]resorcinarene, gemini surfactant spacer length, and mixed micelles. These systems represent a direction to create biocompatible water-soluble functionalized calix[4]resorcinarene composition and may open perspectives in designing organized systems with controllable properties.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Gutsche CD (2008) Calixarenes: An Introduction. RSC Publishing, Cambridge. doi:10.1039/9781847558190
Dyker G, Mastalerz M, Merz K (2003) From a Calix[4]arene to a Hexameric Supracycle. Eur J Org Chem 2003:4355–4362. doi:10.1002/ejoc.200300380
Lee JH, Park J, Park J-W, Ahn H-J, Jaworski J, Jung JH (2015) Supramolecular gels with high strength by tuning of calix[4]arene-derived networks. Nat Commun 6:6650. doi:10.1038/ncomms7650
Baldini L, Sansone F, Casnati A, Ungaro R (2012) Calixarenes in molecular recognition. In: Supramolecular chemistry: from molecules to nanomaterials. Wiley, pp 1–32. Doi:10.1002/9780470661345.smc052
Dumazet-Bonnamour I, Halouani H, Oueslati F, Lamartine R (2005) Calixarenes for metal cations extraction. C R Chimie 8:881–891. doi:10.1016/j.crci.2005.02.004
Homden DM, Redshaw C (2008) The use of calixarenes in metal-based catalysis. Chem Rev 108:5086–5130. doi:10.1021/cr8002196
Mirgorodskaya AB, Yackevich EI, Kudryashova YuR, Kashapov RR, Solovieva SE, Gubaidullin AT, Antipin IS, Zakharova L Ya, Konovalov AI (2014) Design of supramolecular biomimetic catalysts of high substrate specificity by non-covalent self-assembly of calix[4]arenes with amphiphilic and polymeric amines. Coll Surf B Biointerf 117:497–504. doi:10.1016/j.colsurfb.2014.02.003
Wu Z, Song N, Menz R, Pingali B, Yang Y-W, Zheng Y (2015) Nanoparticles functionalized with supramolecular host–guest systems for nanomedicine and healthcare. Nanomedicine 10:1493–1514. doi:10.2217/nnm.15.1
Thallapally PK, Lloyd GO, Atwood JL, Barbour LJ (2005) Diffusion of water in a nonporous hydrophobic crystal. Angew Chem Int Ed 44:3848–3851. doi:10.1002/anie.200500749
Sansone F, Baldini L, Casnati A, Ungaro R (2010) Calixarenes: from biomimetic receptors to multivalent ligands for biomolecular recognition. New J Chem 34:2715–2728. doi:10.1039/C0NJ00285B
Geraci C, Consoli GM, Galante E, Bousquet E, Pappalardo M, Spadaro A (2008) Calix[4]arene decorated with four Tn antigen glycomimetic units and P3CS immunoadjuvant: synthesis, characterization, and anticancer immunological evaluation. Bioconjug Chem 19:751–758. doi:10.1021/bc700411w
Fatima A, Fernandes SA, Sabino AA (2009) Calixarenes as new platforms for drug design. Curr Drug Discov Technol 6:151–170. doi:10.2174/157016309788488302
Gattuso G, Notti A, Pappalardo S, Parisi MF, Pisagattia I, Patanè S (2014) Encapsulation of monoamine neurotransmitters and trace amines by amphiphilic anionic calix[5]arene micelles. New J Chem 38:5983–5990. doi:10.1039/C4NJ01184H
Gangemi CMA, Pappalardo A, Sfrazzetto GT (2015) Applications of supramolecular capsules derived from resorcin[4]arenes, calix[n]arenes and metallo-ligands: from biology to catalysis. RSC Adv 5:51919–51933. doi:10.1039/C5RA09364C
Rodik RV, Anthony A-S, Kalchenko VI, Mély Y, Klymchenko AS (2015) Cationic amphiphilic calixarenes to compact DNA into small nanoparticles for gene delivery. New J Chem 39:1654–1664. doi:10.1039/C4NJ01395F
Majzik A, Fülöp L, Csapó E, Bogár F, Martinek T, Penke B, Bíró G, Dékány I (2010) Functionalization of gold nanoparticles with amino acid, beta-amyloid peptides and fragment. Coll Surf B Biointerf 81:235–241. doi:10.1016/j.colsurfb.2010.07.011
Shatalova NI, Gavrilova EL, Sidorov NA, Burilov AR, Pudovik MA, Krasil’nikova EA, Konovalov AI (2009) Calix[4]resorcinols functionalized with amino acid residues. Russ J Gen Chem 79:1494–1498. doi:10.1134/S1070363209070159
Kashapov RR, Zakharova L Ya, Saifutdinova MN, Kochergin YS, Gavrilova EL, Sinyashin OG (2015) Construction of a water-soluble form of amino acid C-methylcalix[4]resorcinarene. J Mol Liquids 208:58–62. doi:10.1016/j.molliq.2015.04.025
Christian SD, Scamehorn JF (eds) (1995) Solubilization in surfactant aggregates (Surfactant Science Series 55). Marcel Dekker, New York
Zhou W, Li J, Wei W, Su Z, Ma G (2011) Effect of solubilization of surfactant aggregates on pore structure in gigaporous polymeric particles. Coll Surf A Physicochem Eng Aspects 384:549–554. doi:10.1016/j.colsurfa.2011.05.018
Paria S, Yuet PK (2006) Solubilization of naphthalene by pure and mixed surfactants. Ind Eng Chem Res 45:3552–3558. doi:10.1021/ie051377m
Lawrence MJ (2014) Surfactant systems: their use in drug delivery. Chem Soc Rev 23:417–424. doi:10.1039/CS9942300417
Morales JO, Peters JI, Williams RO (2011) Surfactants: their critical role in enhancing drug delivery to the lungs. Ther Deliv 2:623–641. doi:10.4155/tde.11.15
Mirgorodskaya AB, Yackevich EI, Lukashenko SS, Zakharova LY, Konovalov AI (2012) Solubilization and catalytic behavior of micellar system based on gemini surfactant with hydroxyalkylated head group. J Mol Liquids 169:106–109. doi:10.1016/j.molliq.2012.02.012
Manet S, Karpichev Y, Bassani D, Kiagus-Ahmad R, Oda R (2010) Counteranion effect on micellization of cationic gemini surfactants 14-2-14: hofmeister and other counterions. Langmuir 26:10645–10656. doi:10.1021/la1008768
Zana R, Benrraou M, Rueff R (1991) Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir 7:1072–1075. doi:10.1021/la00054a008
Oda R, Huc I, Candau SJ (1997) Gemini surfactants, the effect of hydrophobic chain length and dissymmetry. Chem Commun 1997:2105–2106. doi:10.1039/A704069E
Mirgorodskaya AB, Ye Karpichev, Zakharova L Ya, Yackevitch EI, Kapitanov IV, Lukashenko SS, Popov AF, Konovalov AI (2014) Aggregation behavior and interface properties of mixed surfactant system gemini 14-s-14/CTABr. Coll Surf A Physicochem Eng Aspects 457:425–432. doi:10.1016/j.colsurfa.2014.06.026
Chatterjee A, Maiti S, Sanyal SK, Moulik SP (2002) Micellization and Related Behaviors of N-Cetyl-N-ethanolyl-N, N-dimethyl and N-Cetyl-N, N-diethanolyl-N-methyl Ammonium Bromide. Langmuir 18:2998–3004. doi:10.1021/la010404k
Holmberg K (ed) (2001) Handbook of applied surface and colloid chemistry. Wiley, Weinheim
Kolthoff IM, Stricks W (1948) Solubilization of dimethiylaminoazobenzene in solutions of detergents. I. The effect of temperature on the solubilization and upon the critical concentration. J Phys Chem 52:915–941. doi:10.1021/j150462a001
Francisco V, Basilio N, Garcia-Rio L, Leis JR, Maques EF, Vázquez-Vázquez C (2010) Novel catanionic vesicles from calixarene and single-chain surfactant. Chem Commun 46:6551–6553. doi:10.1039/C0CC01806F
Basílio N, Garcia-Rio L, Martín-Pastor M (2012) Calixarene-based surfactants: evidence of structural reorganization upon micellization. Langmuir 28:2404–2414. doi:10.1021/la204004h
Zhao H-X, Guo D-S, Liu Y (2013) Binding Behaviors of p-Sulfonatocalix[4]arene with Gemini Guests. J Phys Chem B 117:1978–1987. doi:10.1021/jp312744d
Zana R, Xia J (eds) (2004) Gemini surfactant: synthesis, interfacial and solution-phase behavior, and applications. Marcel Dekker, New York
Klíčová L, Šebej P, Štacko P, Filippov SK, Bogomolova A, Padilla M, Klán P (2012) CTAB/water/chloroform reverse micelles: a closed or open association model? Langmuir 28:15185–15192. doi:10.1021/la303245e
Acknowledgments
The authors acknowledge the grant of the Russian Foundation for Basic Research (RFBR) 14-03-90409_Ukr. AS thanks the RFBR for Visiting Research Grant #15-33-50179. YK thanks excellence project of Faculty of Informatics and Management, University of Hradec Kralove and FNHK for supporting this research.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
11743_2016_1792_MOESM1_ESM.doc
Absorbance of saturated solution of studied calix[4]resorcinarene as a function of concentration of surfactant are available as Figs. S1 to S6; the tabular summary is available as Table S1 (DOC 56 kb)
About this article
Cite this article
Zakharova, L.Y., Serdyuk, A.A., Mirgorodskaya, A.B. et al. Amino Acid-Functionalized Calix[4]Resorcinarene Solubilization by Mono- and Dicationic Surfactants. J Surfact Deterg 19, 493–499 (2016). https://doi.org/10.1007/s11743-016-1792-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11743-016-1792-0