Skip to main content
Log in

Amino Acid-Functionalized Calix[4]Resorcinarene Solubilization by Mono- and Dicationic Surfactants

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Poorly water-soluble calix[4]resorcinarenes modified with amino acid (Ala, Val) at the upper rim formed a water-soluble mixed system with micelles of monocationic surfactants cetyltrimethylammonium bromide, cetyldimethyl(2-hydroxyethyl)ammonium bromide, and dicationic (gemini) surfactants, alkanediyl-α,ω-bis(dimethyltetradecylammonium bromides (14-s-14, where s = 2, 4, or 6). UV–Vis and DLS methods demonstrated that the micellar systems of surfactant/functionalized calix[4]resorcinarene underwent structural changes within a relatively narrow concentration range followed by changes in solubilization capacity and polydispersity. Gemini surfactants and monocationic/gemini mixed surfactant systems were provided selectivity in their interaction with calix[4]resorcinarene depending on the bulkiness of the substituent at the upper rim of calix[4]resorcinarene, gemini surfactant spacer length, and mixed micelles. These systems represent a direction to create biocompatible water-soluble functionalized calix[4]resorcinarene composition and may open perspectives in designing organized systems with controllable properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Gutsche CD (2008) Calixarenes: An Introduction. RSC Publishing, Cambridge. doi:10.1039/9781847558190

    Google Scholar 

  2. Dyker G, Mastalerz M, Merz K (2003) From a Calix[4]arene to a Hexameric Supracycle. Eur J Org Chem 2003:4355–4362. doi:10.1002/ejoc.200300380

    Article  Google Scholar 

  3. Lee JH, Park J, Park J-W, Ahn H-J, Jaworski J, Jung JH (2015) Supramolecular gels with high strength by tuning of calix[4]arene-derived networks. Nat Commun 6:6650. doi:10.1038/ncomms7650

    Article  CAS  Google Scholar 

  4. Baldini L, Sansone F, Casnati A, Ungaro R (2012) Calixarenes in molecular recognition. In: Supramolecular chemistry: from molecules to nanomaterials. Wiley, pp 1–32. Doi:10.1002/9780470661345.smc052

  5. Dumazet-Bonnamour I, Halouani H, Oueslati F, Lamartine R (2005) Calixarenes for metal cations extraction. C R Chimie 8:881–891. doi:10.1016/j.crci.2005.02.004

    Article  CAS  Google Scholar 

  6. Homden DM, Redshaw C (2008) The use of calixarenes in metal-based catalysis. Chem Rev 108:5086–5130. doi:10.1021/cr8002196

    Article  CAS  Google Scholar 

  7. Mirgorodskaya AB, Yackevich EI, Kudryashova YuR, Kashapov RR, Solovieva SE, Gubaidullin AT, Antipin IS, Zakharova L Ya, Konovalov AI (2014) Design of supramolecular biomimetic catalysts of high substrate specificity by non-covalent self-assembly of calix[4]arenes with amphiphilic and polymeric amines. Coll Surf B Biointerf 117:497–504. doi:10.1016/j.colsurfb.2014.02.003

    Article  CAS  Google Scholar 

  8. Wu Z, Song N, Menz R, Pingali B, Yang Y-W, Zheng Y (2015) Nanoparticles functionalized with supramolecular host–guest systems for nanomedicine and healthcare. Nanomedicine 10:1493–1514. doi:10.2217/nnm.15.1

    Article  CAS  Google Scholar 

  9. Thallapally PK, Lloyd GO, Atwood JL, Barbour LJ (2005) Diffusion of water in a nonporous hydrophobic crystal. Angew Chem Int Ed 44:3848–3851. doi:10.1002/anie.200500749

    Article  CAS  Google Scholar 

  10. Sansone F, Baldini L, Casnati A, Ungaro R (2010) Calixarenes: from biomimetic receptors to multivalent ligands for biomolecular recognition. New J Chem 34:2715–2728. doi:10.1039/C0NJ00285B

    Article  CAS  Google Scholar 

  11. Geraci C, Consoli GM, Galante E, Bousquet E, Pappalardo M, Spadaro A (2008) Calix[4]arene decorated with four Tn antigen glycomimetic units and P3CS immunoadjuvant: synthesis, characterization, and anticancer immunological evaluation. Bioconjug Chem 19:751–758. doi:10.1021/bc700411w

    Article  CAS  Google Scholar 

  12. Fatima A, Fernandes SA, Sabino AA (2009) Calixarenes as new platforms for drug design. Curr Drug Discov Technol 6:151–170. doi:10.2174/157016309788488302

    Article  Google Scholar 

  13. Gattuso G, Notti A, Pappalardo S, Parisi MF, Pisagattia I, Patanè S (2014) Encapsulation of monoamine neurotransmitters and trace amines by amphiphilic anionic calix[5]arene micelles. New J Chem 38:5983–5990. doi:10.1039/C4NJ01184H

    Article  CAS  Google Scholar 

  14. Gangemi CMA, Pappalardo A, Sfrazzetto GT (2015) Applications of supramolecular capsules derived from resorcin[4]arenes, calix[n]arenes and metallo-ligands: from biology to catalysis. RSC Adv 5:51919–51933. doi:10.1039/C5RA09364C

    Article  CAS  Google Scholar 

  15. Rodik RV, Anthony A-S, Kalchenko VI, Mély Y, Klymchenko AS (2015) Cationic amphiphilic calixarenes to compact DNA into small nanoparticles for gene delivery. New J Chem 39:1654–1664. doi:10.1039/C4NJ01395F

    Article  CAS  Google Scholar 

  16. Majzik A, Fülöp L, Csapó E, Bogár F, Martinek T, Penke B, Bíró G, Dékány I (2010) Functionalization of gold nanoparticles with amino acid, beta-amyloid peptides and fragment. Coll Surf B Biointerf 81:235–241. doi:10.1016/j.colsurfb.2010.07.011

    Article  CAS  Google Scholar 

  17. Shatalova NI, Gavrilova EL, Sidorov NA, Burilov AR, Pudovik MA, Krasil’nikova EA, Konovalov AI (2009) Calix[4]resorcinols functionalized with amino acid residues. Russ J Gen Chem 79:1494–1498. doi:10.1134/S1070363209070159

    Article  CAS  Google Scholar 

  18. Kashapov RR, Zakharova L Ya, Saifutdinova MN, Kochergin YS, Gavrilova EL, Sinyashin OG (2015) Construction of a water-soluble form of amino acid C-methylcalix[4]resorcinarene. J Mol Liquids 208:58–62. doi:10.1016/j.molliq.2015.04.025

    Article  CAS  Google Scholar 

  19. Christian SD, Scamehorn JF (eds) (1995) Solubilization in surfactant aggregates (Surfactant Science Series 55). Marcel Dekker, New York

    Google Scholar 

  20. Zhou W, Li J, Wei W, Su Z, Ma G (2011) Effect of solubilization of surfactant aggregates on pore structure in gigaporous polymeric particles. Coll Surf A Physicochem Eng Aspects 384:549–554. doi:10.1016/j.colsurfa.2011.05.018

    Article  CAS  Google Scholar 

  21. Paria S, Yuet PK (2006) Solubilization of naphthalene by pure and mixed surfactants. Ind Eng Chem Res 45:3552–3558. doi:10.1021/ie051377m

    Article  CAS  Google Scholar 

  22. Lawrence MJ (2014) Surfactant systems: their use in drug delivery. Chem Soc Rev 23:417–424. doi:10.1039/CS9942300417

    Article  Google Scholar 

  23. Morales JO, Peters JI, Williams RO (2011) Surfactants: their critical role in enhancing drug delivery to the lungs. Ther Deliv 2:623–641. doi:10.4155/tde.11.15

    Article  CAS  Google Scholar 

  24. Mirgorodskaya AB, Yackevich EI, Lukashenko SS, Zakharova LY, Konovalov AI (2012) Solubilization and catalytic behavior of micellar system based on gemini surfactant with hydroxyalkylated head group. J Mol Liquids 169:106–109. doi:10.1016/j.molliq.2012.02.012

    Article  CAS  Google Scholar 

  25. Manet S, Karpichev Y, Bassani D, Kiagus-Ahmad R, Oda R (2010) Counteranion effect on micellization of cationic gemini surfactants 14-2-14: hofmeister and other counterions. Langmuir 26:10645–10656. doi:10.1021/la1008768

    Article  CAS  Google Scholar 

  26. Zana R, Benrraou M, Rueff R (1991) Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir 7:1072–1075. doi:10.1021/la00054a008

    Article  CAS  Google Scholar 

  27. Oda R, Huc I, Candau SJ (1997) Gemini surfactants, the effect of hydrophobic chain length and dissymmetry. Chem Commun 1997:2105–2106. doi:10.1039/A704069E

    Article  Google Scholar 

  28. Mirgorodskaya AB, Ye Karpichev, Zakharova L Ya, Yackevitch EI, Kapitanov IV, Lukashenko SS, Popov AF, Konovalov AI (2014) Aggregation behavior and interface properties of mixed surfactant system gemini 14-s-14/CTABr. Coll Surf A Physicochem Eng Aspects 457:425–432. doi:10.1016/j.colsurfa.2014.06.026

    Article  CAS  Google Scholar 

  29. Chatterjee A, Maiti S, Sanyal SK, Moulik SP (2002) Micellization and Related Behaviors of N-Cetyl-N-ethanolyl-N, N-dimethyl and N-Cetyl-N, N-diethanolyl-N-methyl Ammonium Bromide. Langmuir 18:2998–3004. doi:10.1021/la010404k

    Article  CAS  Google Scholar 

  30. Holmberg K (ed) (2001) Handbook of applied surface and colloid chemistry. Wiley, Weinheim

    Google Scholar 

  31. Kolthoff IM, Stricks W (1948) Solubilization of dimethiylaminoazobenzene in solutions of detergents. I. The effect of temperature on the solubilization and upon the critical concentration. J Phys Chem 52:915–941. doi:10.1021/j150462a001

    Article  CAS  Google Scholar 

  32. Francisco V, Basilio N, Garcia-Rio L, Leis JR, Maques EF, Vázquez-Vázquez C (2010) Novel catanionic vesicles from calixarene and single-chain surfactant. Chem Commun 46:6551–6553. doi:10.1039/C0CC01806F

    Article  CAS  Google Scholar 

  33. Basílio N, Garcia-Rio L, Martín-Pastor M (2012) Calixarene-based surfactants: evidence of structural reorganization upon micellization. Langmuir 28:2404–2414. doi:10.1021/la204004h

    Article  Google Scholar 

  34. Zhao H-X, Guo D-S, Liu Y (2013) Binding Behaviors of p-Sulfonatocalix[4]arene with Gemini Guests. J Phys Chem B 117:1978–1987. doi:10.1021/jp312744d

    Article  CAS  Google Scholar 

  35. Zana R, Xia J (eds) (2004) Gemini surfactant: synthesis, interfacial and solution-phase behavior, and applications. Marcel Dekker, New York

    Google Scholar 

  36. Klíčová L, Šebej P, Štacko P, Filippov SK, Bogomolova A, Padilla M, Klán P (2012) CTAB/water/chloroform reverse micelles: a closed or open association model? Langmuir 28:15185–15192. doi:10.1021/la303245e

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the grant of the Russian Foundation for Basic Research (RFBR) 14-03-90409_Ukr. AS thanks the RFBR for Visiting Research Grant #15-33-50179. YK thanks excellence project of Faculty of Informatics and Management, University of Hradec Kralove and FNHK for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yevgen Karpichev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11743_2016_1792_MOESM1_ESM.doc

Absorbance of saturated solution of studied calix[4]resorcinarene as a function of concentration of surfactant are available as Figs. S1 to S6; the tabular summary is available as Table S1 (DOC 56 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharova, L.Y., Serdyuk, A.A., Mirgorodskaya, A.B. et al. Amino Acid-Functionalized Calix[4]Resorcinarene Solubilization by Mono- and Dicationic Surfactants. J Surfact Deterg 19, 493–499 (2016). https://doi.org/10.1007/s11743-016-1792-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-016-1792-0

Keywords

Navigation