Journal of Surfactants and Detergents

, Volume 18, Issue 5, pp 755–760 | Cite as

Shape of Long Chain Alkyl Sulfonate Micelle upon Salt Addition: a Molecular Dynamics Study

  • Armen H. Poghosyan
  • Levon H. Arsenyan
  • Aram A. Shahinyan
Original Article


Here we report a molecular dynamics simulation on the state of long chain alkyl sulfonate micelle which occurs in the presence of salt. We tracked the formation of a large micelle with a dumbbell-like shape, which has hemispherical end caps with a large radius rather than the middle cylindrical body, where the shape bending angle was around 160o. The data from chain analysis indicate that the micelle hydrocarbon layer is covered with disordered tails. We also report micelle fission controlled by changes in salt concentration. Overall, the parameters obtained are compared with existing experimental findings.


Alkyl sulfonate micelles Molecular dynamics simulation Ionic strength 



The authors express gratitude to Dr. Hr. Astsatryan for technical assistance.

Supplementary material

11743_2015_1701_MOESM1_ESM.docx (126 kb)
Supplementary material 1 (DOCX 126 kb)


  1. 1.
    Mittal KL (1977) Micellization, solubilization, and microemulsions. Plenum Press, New YorkCrossRefGoogle Scholar
  2. 2.
    Zana R (2005) Dynamics of surfactant self-assembles: micelles, microemulsions, vesicles and lyotropic phases. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  3. 3.
    Marrink SJ, Tieleman DP, Mark AE (2000) Molecular dynamics simulation of the kinetics of spontaneous micelle formation. J Phys Chem B 104:12165–12173CrossRefGoogle Scholar
  4. 4.
    Sammalkorpi M, Karttunen M, Haataja M (2008) Micelle fission through surface instability and formation of an interdigitating stalk. J Am Chem Soc 130:17977–17980CrossRefGoogle Scholar
  5. 5.
    Sammalkorpi M, Sanders S, Panagiotopoulos AZ, Karttunen M, Haataja M (2010) Simulations of micellization of sodium hexyl sulfate. J Phys Chem B 115:1403–1410CrossRefGoogle Scholar
  6. 6.
    Bernardino K, de Moura AF (2013) Aggregation thermodynamics of sodium octanoate micelles studied by means of molecular dynamics simulations. J Phys Chem B 117:7324–7334CrossRefGoogle Scholar
  7. 7.
    Berr SS, Jones RRM (1988) Effect of added sodium and lithium chlorides on intermicellar interactions and micellar size of aqueous dodecyl sulfate aggregates as determined by small-angle neutron scattering. Langmuir 4:1247–1251CrossRefGoogle Scholar
  8. 8.
    Ayvazian OM, Shahinyan AA (1976) The influence of electrolytes on the dissociation degree of sodium pentadecylfulfonate micelles in water. Armen Chem J 105:667–673Google Scholar
  9. 9.
    Bezzobotnov VY, Borbely S, Cser L, Farago B, Gladkih IA, Ostanevich YM, Vas S (1988) Temperature and concentration dependence of properties of sodium dodecyl sulfate micelles determined from small-angle neutron scattering experiments. J Chem Phys 92:5738–5743CrossRefGoogle Scholar
  10. 10.
    Chen L, Xiao JX, Ma J (2004) Striking differences between alkyl sulfate and alkyl sulfonate when mixed with cationic surfactants. Colloid Polym Sci 282:524–529CrossRefGoogle Scholar
  11. 11.
    Poghosyan AH, Arsenyan LH, Shahinyan AA (2013) Molecular dynamics study of intermediate phase of long chain alkyl sulfonate/water systems. Langmuir 29:29–37CrossRefGoogle Scholar
  12. 12.
    Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56CrossRefGoogle Scholar
  13. 13.
    Huibers PDT (1999) Quantum-chemical calculations of the charge distribution in ionic surfactants. Langmuir 15:7546–7550CrossRefGoogle Scholar
  14. 14.
    Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Intermolecular Forces. Reidel, DordrechtGoogle Scholar
  15. 15.
    Hess B, Bekker H, Berendsen HJC, Fraaije J (1987) Lincs: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRefGoogle Scholar
  16. 16.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRefGoogle Scholar
  17. 17.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  18. 18.
    Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98–103CrossRefGoogle Scholar
  19. 19.
    Shahinyan AA, Ayvazian OM, Nalbandyan YE, Melkonyan LG, Markaryan SA (1977) Influence of neutral electrolytes on the compactness and shape of anion-active surfactant micelles. Colloid J 3:605–609Google Scholar
  20. 20.
    May S, Ben-Shaul A (2001) Molecular theory of the sphere to rod transition and the second CMC in micellar solutions. J Phys Chem B 105:630–640CrossRefGoogle Scholar
  21. 21.
    Halle B, Langren M, Jonsson B (1988) The shape of ionic micelles. J de Physique 49:1235–1259CrossRefGoogle Scholar
  22. 22.
    Cheng DCH, Gulari E (1982) Micellation and intermicellar interactions in aqueous sodium dodecyl benzene sulfonate solutions. J Coll Int Sci 90:410–423CrossRefGoogle Scholar
  23. 23.
    Tartar HV (1955) A theory of the structure of the micelles of normal paraffin-chain salts in aqueous solution. J Phys Chem 59:1195–1199CrossRefGoogle Scholar
  24. 24.
    Anachkov SE, Danov LD, Basheva ES, Kralchevsky PA, Ananthapadmanabhan KP (2012) Determination of the aggregation number and charge of ionic surfactant micelles from the stepwise thinning of foam films. Adv Coll Int Sci 183:55–67CrossRefGoogle Scholar
  25. 25.
    Shahinyan AA, Baghdasaryan VV (1987) Cooperative transfer of excitation energy and the dynamic structure of micelles. Ber Bunsenges Phys Chem 91:670–675CrossRefGoogle Scholar

Copyright information

© AOCS 2015

Authors and Affiliations

  • Armen H. Poghosyan
    • 1
  • Levon H. Arsenyan
    • 2
  • Aram A. Shahinyan
    • 1
  1. 1.International Scientific-Educational Center of National Academy of Sciences of ArmeniaYerevanArmenia
  2. 2.The Institute of Applied Problem of Physics of National Academy of ArmeniaYerevanArmenia

Personalised recommendations