The case for the “A.I.S.E. Low Temperature Washing” initiative. (2013) An initiative from the detergent industry to promote low temperature washing
Josephy B, Bush E, Nipkow J, Kleeli K, Glanzmann S (2013) Cold wash—Do prejudices impede high energy savings
Timms RE (1985) Physical properties of oils and mixtures of oils. J Am Oil Chem Soc 62(2):241–249. doi:10.1007/bf02541385
Article
CAS
Google Scholar
Phan T, Witthayapanyanon A, Harwell J, Sabatini D (2010) Microemulsion-based vegetable oil detergency using an extended surfactant. J Surfact Deterg 13(3):313–319. doi:10.1007/s11743-010-1184-9
Article
CAS
Google Scholar
Tongcumpou C, Acosta EJ, Quencer LB, Joseph AF, Scamehorn JF, Sabatini DA, Chavadej S, Yanumet N (2003) Microemulsion formation and detergency with oily soils: I. Phase behavior and interfacial tension. J Surfact Deterg 6(3):191–203. doi:10.1007/s11743-003-0262-5
Article
CAS
Google Scholar
Tanthakit P, Ratchatawetchakul P, Chavadej S, Scamehorn J, Sabatini D, Tongcumpou C (2010) Palm oil removal from fabric using microemulsion-based formulations. J Surfact Deterg 13(4):485–495. doi:10.1007/s11743-010-1219-2
Article
CAS
Google Scholar
Goel SK (1998) Measuring detergency of oily soils in the vicinity of phase inversion temperatures of commercial nonionic surfactants using an oil-soluble dye. J Surfact Deterg 1(2):221–226. doi:10.1007/s11743-998-0023-5
Article
CAS
Google Scholar
Raney K, Benson H (1990) The effect of polar soil components on the phase inversion temperature and optimum detergency conditions. J Am Oil Chem Soc 67(11):722–729. doi:10.1007/bf02540479
Article
CAS
Google Scholar
Lim J-C, Miller C (1991) Dynamic behavior in systems containing nonionic surfactants and polar oils and its relationship to detergency. In: Mittal KL, Shah DO (eds) Surfactants in solution. Springer, New York, pp 491–504
Chapter
Google Scholar
Miller CA (2006) Detergency for engineering applications of surfactant solutions. In: Somasunaran P, Hubbard AT (eds) Encyclopedia of surface and colloid science. Taylor & Francis, Boca Raton, pp 1664–1669
Thompson L (1994) The role of oil detachment mechanism in determining optimum detergency conditions. J Colloid Interface Sci 163:61–73
Article
CAS
Google Scholar
Komaki M, Kim S, Hashimoto T (2002) Fatty acid soil detergency performance of poly(sodium α-hydroxyacrylate). J Surfact Deterg 5(1):25–31. doi:10.1007/s11743-002-0201-5
Article
CAS
Google Scholar
Tanthakit P, Chavadej S, Scamehorn J, Sabatini D, Tongcumpou C (2008) Microemulsion formation and detergency with oily soil: IV. Effect of rinse cycle design. J Surfact Deterg 11(2):117–128. doi:10.1007/s11743-008-1062-x
Article
CAS
Google Scholar
Tongcumpou C, Acosta EJ, Quencer LB, Joseph AF, Scamehorn JF, Sabatini DA, Yanumet N, Chavadej S (2005) Microemulsion formation and detergency with oily soils: III. performance and mechanisms. J Surfact Deterg 8(2):147–156. doi:10.1007/s11743-005-340-8
Article
CAS
Google Scholar
Miller CA, Raney KH (1993) Solubilization-emulsification mechanisms of detergency. Colloids Surf A Physicochem Eng Asp 74(2–3):169–215
Article
CAS
Google Scholar
Miñana-Pérez M, Graciaa A, Lachaise J, Salager JL (1995) Solubilization of polar oils in microemulsion systems. In: Appell J, Porte G (eds) Trends in colloid and interface science IX. Progress in colloid and polymer science, vol 98. Steinkopff, pp 177–179
Salager J-L, Antón R, Sabatini D, Harwell J, Acosta E, Tolosa L (2005) Enhancing solubilization in microemulsions—state of the art and current trends. J Surfact Deterg 8(1):3–21. doi:10.1007/s11743-005-0328-4
Article
CAS
Google Scholar
Do L, Withayyapayanon A, Harwell J, Sabatini D (2009) Environmentally friendly vegetable oil microemulsions using extended surfactants and linkers. J Surfact Deterg 12(2):91–99. doi:10.1007/s11743-008-1096-0
Article
Google Scholar
Witthayapanyanon A, Phan T, Heitmann T, Harwell J, Sabatini D (2010) Interfacial properties of extended-surfactant-based microemulsions and related macroemulsions. J Surfact Deterg 13(2):127–134. doi:10.1007/s11743-009-1151-5
Article
CAS
Google Scholar
Phan T, Harwell J, Sabatini D (2010) Effects of triglyceride molecular structure on optimum formulation of surfactant-oil-water systems. J Surfact Deterg 13(2):189–194. doi:10.1007/s11743-009-1155-1
Article
CAS
Google Scholar
Pérez MM, Graciaa A, Lachaise J, Salager JL (1995) Solubilization of polar oils with extended surfactants. Colloids Surf A Physicochem Engr Asp 100:217–224
Article
Google Scholar
Salager JL, Forgiarini AM, Bullon J (2013) How to attain ultralow interfacial tension and three-phase behavior with surfactant formulations for enhanced oil recovery: a review. Part 1. Optimum formulation for simple surfactant-oil-water ternary systems. J Surfact Deterg 16:449–472
Article
CAS
Google Scholar
Salager JL, Forgiarini AM, Manchego L, Bullon J (2013) How to attain an ultralow interfacial tension and a three-phase behavior with a surfactant formulation for enhanced oil recovery: a review. Part 2. Performance improvement trends from Winsor's premise to currently proposed inter- and intra-molecular mixtures. J Surfact Deterg 16(5):631–663
Article
CAS
Google Scholar
Pérez MM, Graciaa A, Lachaise J, Salager JL (1996) Systems containing mixtures of extended-surfactants and conventional nonionics. In: Proceedings of 4th world surfactants congress, vol 2, pp 226–234
Smith GA, Hand KR (2006) Enhanced solubilization using extended chain surfactants. US Patent 2006/0211593
Garti N, Shevachman M, Shani A (2004) Solubilization of lycopene in jojoba oil microemulsion. J Amer Oil Chem Soc 81(9):873–877. doi:10.1007/s11746-004-0994-4
Article
CAS
Google Scholar
Acosta E, Kiran S, Hammond C (2012) The HLD-NAC model for extended surfactant microemulsions. J Surfact Deterg 15(4):495–504. doi:10.1007/s11743-012-1343-2
Article
CAS
Google Scholar
Kiran KK, Acosta EJ (2010) Predicting the Morphology and Viscosity of Microemulsions Using the HLD-NAC Model. Ind Eng Chem Res 49(7):3424–3432
Article
CAS
Google Scholar
Doan T, Acosta E, Scamehorn JF, Sabatini DA (2003) Formulating middle-phase microemulsions using mixed anionic and cationic surfactant systems. J Surfact Deterg 6(3):215–224. doi:10.1007/s11743-003-0264-3
Article
Google Scholar
Upadhyaya A, Acosta EJ, Scamehorn JF, Sabatini DA (2006) Microemulsion phase behavior of anionic-cationic surfactant mixtures: effect of tail branching. J Surfact Deterg 9(2):169–179. doi:10.1007/s11743-006-0387-6
Article
CAS
Google Scholar
Salager JL (1999) Ionic microemulsions. In: Broze G (ed) Handbook of detergents - Part A: Properties. Marcel Dekker, New York, pp 247–280
Salager JL (1996) Quantifying the concept of physico-chemical formulation in surfactant-oil-water systems—state of the art. In: Solans C, Infante MR, García-Celma MJ (eds) Trends in colloid and interface science X. Progress in colloid polymer science, vol 100. Steinkopff, pp 137–142
Salager JL, Morgan JC, Schchter RS, Wade WH (1979) Optimum formulation of surfactant/water/oil systems for minimum interfacial tension or phase behavior. SPE J 19:107–109
Acosta E, Yuan J, Bhakta A (2008) The characteristic curvature of ionic surfactants. J Surfact Deterg 11(2):145–158. doi:10.1007/s11743-008-1065-7
Article
CAS
Google Scholar
Acosta EJ, Szekeres E, Sabatini DA, Harwell JH (2003) Net-average curvature model for solubilization and supersolubilization in surfactant microemulsions. Langmuir 19:186–195
Article
CAS
Google Scholar
Salager JL, Marquez N, Graciaa A, Lachaise J (2000) Partitioning of ethoxylated octylphenol surfactants in microemulsion-oil water systems: influence of temperature and relation between partitioning coefficient and physicochemical formulation. Langmuir 16:5534–5539
Article
CAS
Google Scholar
Antón R, Andérez J, Bracho C, Vejar F, Salager J-L (2008) Practical surfactant mixing rules based on the attainment of microemulsion–oil–water three-phase behavior systems. In: Narayanan R (ed) Interfacial processes and molecular aggregation of surfactants. Advances in Polymer Science, vol 218. Springer, Berlin, Heidelberg, pp 83–113
Witthayapanyanon A, Harwell JH, Sabatini DA (2008) Hydrophilic–lipophilic deviation (HLD) method for characterizing conventional and extended surfactants. J Colloid Interface Sci 325(1):259–266. doi:10.1016/j.jcis.2008.05.061
Article
CAS
Google Scholar
D4265-98 ASTMA (2000) Standard guide for evaluating stain removal performance in home laundering. Annual book of ASTM standards, vol 15.04, West Conshohocken
Jadidi N, Adib B, Malihi FB (2013) Synergism and performance optimization in liquid detergents containing binary mixtures of anionic-nonionic, and anionic-cationic surfactants. J Surfact Deterg 16(1):115–121. doi:10.1007/s11743-012-1371-y
Article
CAS
Google Scholar
Salager JL, Manchego L, Márquez L, Bullón J, Forgiarini A (2014) Trends to attain a lower interfacial tension in a revisited pure alkyl polyethylene glycol surfactant–alkane–water ternary system. Basic concepts and straightforward guidelines for improving performance in enhanced oil recovery formulations. J Surfact Deterg 17(2):199–213. doi:10.1007/s11743-013-1534-5
Article
CAS
Google Scholar
Velásquez J, Scorzza C, Vejar F, Forgiarini A, Antón R, Salager J-L (2010) Effect of temperature and other variables on the optimum formulation of anionic extended surfactant–alkane–brine systems. J Surfact Deterg 13(1):69-73. doi:10.1007/s11743-009-1142-6
Article
Google Scholar
Shinoda K, Kunieda H (1982) Phase behavior in systems of nonionic-surfactant/water/oil around the hydrophile-lipophile-balance-temperature (HLB-temperature). J Dispersion Sci Technol 3:233–244
Article
Google Scholar
Kahlweit M, Strey R (1988) Phase behavior of quinary mixtures of the type H2O-oil-nonionic amphiphile-ionic amphiphile-salt. J Phys Chem 92:1557–1563
Article
CAS
Google Scholar