Skip to main content

Detergency of Vegetable Oils and Semi-Solid Fats Using Microemulsion Mixtures of Anionic Extended Surfactants: The HLD Concept and Cold Water Applications

Abstract

In spite of the increasing interest in cold temperature detergency of vegetable oils and fats, very limited research has been published on this topic. Extended surfactants have recently been shown to produce very promising detergency with vegetable oils at ambient temperature. However, the excessive salinity requirement (4–14 %) for these surfactants has limited their use in practical applications. In this work, we investigated the mixture of a linear C10–18PO–2EO–NaSO4 extended surfactant and a hydrophobic twin-tailed sodium dioctyl sulfosuccinate surfactant for cold temperature detergency of vegetable oils and semi-solid fats. Four vegetable oils of varying melting points (from −10 to 28 °C) were studied, these were canola, jojoba, coconut and palm kernel oils. Anionic surfactant mixtures showed synergism in detergency performance compared to single surfactant systems. At temperatures above the melting point, greater than 90 % detergency was achieved at 0.5 % NaCl. While detergency performance decreased at temperatures below the melting point, it was still superior to that of a commercial detergent (up to 80 vs. 40 %). Further, results show that the experimental microemulsion phase behaviors correlated very well with predictions from the hydrophilic–lipophilic deviation concept.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. The case for the “A.I.S.E. Low Temperature Washing” initiative. (2013) An initiative from the detergent industry to promote low temperature washing

  2. Josephy B, Bush E, Nipkow J, Kleeli K, Glanzmann S (2013) Cold wash—Do prejudices impede high energy savings

  3. Timms RE (1985) Physical properties of oils and mixtures of oils. J Am Oil Chem Soc 62(2):241–249. doi:10.1007/bf02541385

    Article  CAS  Google Scholar 

  4. Phan T, Witthayapanyanon A, Harwell J, Sabatini D (2010) Microemulsion-based vegetable oil detergency using an extended surfactant. J Surfact Deterg 13(3):313–319. doi:10.1007/s11743-010-1184-9

    Article  CAS  Google Scholar 

  5. Tongcumpou C, Acosta EJ, Quencer LB, Joseph AF, Scamehorn JF, Sabatini DA, Chavadej S, Yanumet N (2003) Microemulsion formation and detergency with oily soils: I. Phase behavior and interfacial tension. J Surfact Deterg 6(3):191–203. doi:10.1007/s11743-003-0262-5

    Article  CAS  Google Scholar 

  6. Tanthakit P, Ratchatawetchakul P, Chavadej S, Scamehorn J, Sabatini D, Tongcumpou C (2010) Palm oil removal from fabric using microemulsion-based formulations. J Surfact Deterg 13(4):485–495. doi:10.1007/s11743-010-1219-2

    Article  CAS  Google Scholar 

  7. Goel SK (1998) Measuring detergency of oily soils in the vicinity of phase inversion temperatures of commercial nonionic surfactants using an oil-soluble dye. J Surfact Deterg 1(2):221–226. doi:10.1007/s11743-998-0023-5

    Article  CAS  Google Scholar 

  8. Raney K, Benson H (1990) The effect of polar soil components on the phase inversion temperature and optimum detergency conditions. J Am Oil Chem Soc 67(11):722–729. doi:10.1007/bf02540479

    Article  CAS  Google Scholar 

  9. Lim J-C, Miller C (1991) Dynamic behavior in systems containing nonionic surfactants and polar oils and its relationship to detergency. In: Mittal KL, Shah DO (eds) Surfactants in solution. Springer, New York, pp 491–504

    Chapter  Google Scholar 

  10. Miller CA (2006) Detergency for engineering applications of surfactant solutions. In: Somasunaran P, Hubbard AT (eds) Encyclopedia of surface and colloid science. Taylor & Francis, Boca Raton, pp 1664–1669

  11. Thompson L (1994) The role of oil detachment mechanism in determining optimum detergency conditions. J Colloid Interface Sci 163:61–73

    Article  CAS  Google Scholar 

  12. Komaki M, Kim S, Hashimoto T (2002) Fatty acid soil detergency performance of poly(sodium α-hydroxyacrylate). J Surfact Deterg 5(1):25–31. doi:10.1007/s11743-002-0201-5

    Article  CAS  Google Scholar 

  13. Tanthakit P, Chavadej S, Scamehorn J, Sabatini D, Tongcumpou C (2008) Microemulsion formation and detergency with oily soil: IV. Effect of rinse cycle design. J Surfact Deterg 11(2):117–128. doi:10.1007/s11743-008-1062-x

    Article  CAS  Google Scholar 

  14. Tongcumpou C, Acosta EJ, Quencer LB, Joseph AF, Scamehorn JF, Sabatini DA, Yanumet N, Chavadej S (2005) Microemulsion formation and detergency with oily soils: III. performance and mechanisms. J Surfact Deterg 8(2):147–156. doi:10.1007/s11743-005-340-8

    Article  CAS  Google Scholar 

  15. Miller CA, Raney KH (1993) Solubilization-emulsification mechanisms of detergency. Colloids Surf A Physicochem Eng Asp 74(2–3):169–215

    Article  CAS  Google Scholar 

  16. Miñana-Pérez M, Graciaa A, Lachaise J, Salager JL (1995) Solubilization of polar oils in microemulsion systems. In: Appell J, Porte G (eds) Trends in colloid and interface science IX. Progress in colloid and polymer science, vol 98. Steinkopff, pp 177–179

  17. Salager J-L, Antón R, Sabatini D, Harwell J, Acosta E, Tolosa L (2005) Enhancing solubilization in microemulsions—state of the art and current trends. J Surfact Deterg 8(1):3–21. doi:10.1007/s11743-005-0328-4

    Article  CAS  Google Scholar 

  18. Do L, Withayyapayanon A, Harwell J, Sabatini D (2009) Environmentally friendly vegetable oil microemulsions using extended surfactants and linkers. J Surfact Deterg 12(2):91–99. doi:10.1007/s11743-008-1096-0

    Article  Google Scholar 

  19. Witthayapanyanon A, Phan T, Heitmann T, Harwell J, Sabatini D (2010) Interfacial properties of extended-surfactant-based microemulsions and related macroemulsions. J Surfact Deterg 13(2):127–134. doi:10.1007/s11743-009-1151-5

    Article  CAS  Google Scholar 

  20. Phan T, Harwell J, Sabatini D (2010) Effects of triglyceride molecular structure on optimum formulation of surfactant-oil-water systems. J Surfact Deterg 13(2):189–194. doi:10.1007/s11743-009-1155-1

    Article  CAS  Google Scholar 

  21. Pérez MM, Graciaa A, Lachaise J, Salager JL (1995) Solubilization of polar oils with extended surfactants. Colloids Surf A Physicochem Engr Asp 100:217–224

    Article  Google Scholar 

  22. Salager JL, Forgiarini AM, Bullon J (2013) How to attain ultralow interfacial tension and three-phase behavior with surfactant formulations for enhanced oil recovery: a review. Part 1. Optimum formulation for simple surfactant-oil-water ternary systems. J Surfact Deterg 16:449–472

    Article  CAS  Google Scholar 

  23. Salager JL, Forgiarini AM, Manchego L, Bullon J (2013) How to attain an ultralow interfacial tension and a three-phase behavior with a surfactant formulation for enhanced oil recovery: a review. Part 2. Performance improvement trends from Winsor's premise to currently proposed inter- and intra-molecular mixtures. J Surfact Deterg 16(5):631–663

    Article  CAS  Google Scholar 

  24. Pérez MM, Graciaa A, Lachaise J, Salager JL (1996) Systems containing mixtures of extended-surfactants and conventional nonionics. In: Proceedings of 4th world surfactants congress, vol 2, pp 226–234

  25. Smith GA, Hand KR (2006) Enhanced solubilization using extended chain surfactants. US Patent 2006/0211593

  26. Garti N, Shevachman M, Shani A (2004) Solubilization of lycopene in jojoba oil microemulsion. J Amer Oil Chem Soc 81(9):873–877. doi:10.1007/s11746-004-0994-4

    Article  CAS  Google Scholar 

  27. Acosta E, Kiran S, Hammond C (2012) The HLD-NAC model for extended surfactant microemulsions. J Surfact Deterg 15(4):495–504. doi:10.1007/s11743-012-1343-2

    Article  CAS  Google Scholar 

  28. Kiran KK, Acosta EJ (2010) Predicting the Morphology and Viscosity of Microemulsions Using the HLD-NAC Model. Ind Eng Chem Res 49(7):3424–3432

    Article  CAS  Google Scholar 

  29. Doan T, Acosta E, Scamehorn JF, Sabatini DA (2003) Formulating middle-phase microemulsions using mixed anionic and cationic surfactant systems. J Surfact Deterg 6(3):215–224. doi:10.1007/s11743-003-0264-3

    Article  Google Scholar 

  30. Upadhyaya A, Acosta EJ, Scamehorn JF, Sabatini DA (2006) Microemulsion phase behavior of anionic-cationic surfactant mixtures: effect of tail branching. J Surfact Deterg 9(2):169–179. doi:10.1007/s11743-006-0387-6

    Article  CAS  Google Scholar 

  31. Salager JL (1999) Ionic microemulsions. In: Broze G (ed) Handbook of detergents - Part A: Properties. Marcel Dekker, New York, pp 247–280

  32. Salager JL (1996) Quantifying the concept of physico-chemical formulation in surfactant-oil-water systems—state of the art. In: Solans C, Infante MR, García-Celma MJ (eds) Trends in colloid and interface science X. Progress in colloid polymer science, vol 100. Steinkopff, pp 137–142

  33. Salager JL, Morgan JC, Schchter RS, Wade WH (1979) Optimum formulation of surfactant/water/oil systems for minimum interfacial tension or phase behavior. SPE J 19:107–109

  34. Acosta E, Yuan J, Bhakta A (2008) The characteristic curvature of ionic surfactants. J Surfact Deterg 11(2):145–158. doi:10.1007/s11743-008-1065-7

    Article  CAS  Google Scholar 

  35. Acosta EJ, Szekeres E, Sabatini DA, Harwell JH (2003) Net-average curvature model for solubilization and supersolubilization in surfactant microemulsions. Langmuir 19:186–195

    Article  CAS  Google Scholar 

  36. Salager JL, Marquez N, Graciaa A, Lachaise J (2000) Partitioning of ethoxylated octylphenol surfactants in microemulsion-oil water systems: influence of temperature and relation between partitioning coefficient and physicochemical formulation. Langmuir 16:5534–5539

    Article  CAS  Google Scholar 

  37. Antón R, Andérez J, Bracho C, Vejar F, Salager J-L (2008) Practical surfactant mixing rules based on the attainment of microemulsion–oil–water three-phase behavior systems. In: Narayanan R (ed) Interfacial processes and molecular aggregation of surfactants. Advances in Polymer Science, vol 218. Springer, Berlin, Heidelberg, pp 83–113

  38. Witthayapanyanon A, Harwell JH, Sabatini DA (2008) Hydrophilic–lipophilic deviation (HLD) method for characterizing conventional and extended surfactants. J Colloid Interface Sci 325(1):259–266. doi:10.1016/j.jcis.2008.05.061

    Article  CAS  Google Scholar 

  39. D4265-98 ASTMA (2000) Standard guide for evaluating stain removal performance in home laundering. Annual book of ASTM standards, vol 15.04, West Conshohocken

  40. Jadidi N, Adib B, Malihi FB (2013) Synergism and performance optimization in liquid detergents containing binary mixtures of anionic-nonionic, and anionic-cationic surfactants. J Surfact Deterg 16(1):115–121. doi:10.1007/s11743-012-1371-y

    Article  CAS  Google Scholar 

  41. Salager JL, Manchego L, Márquez L, Bullón J, Forgiarini A (2014) Trends to attain a lower interfacial tension in a revisited pure alkyl polyethylene glycol surfactant–alkane–water ternary system. Basic concepts and straightforward guidelines for improving performance in enhanced oil recovery formulations. J Surfact Deterg 17(2):199–213. doi:10.1007/s11743-013-1534-5

    Article  CAS  Google Scholar 

  42. Velásquez J, Scorzza C, Vejar F, Forgiarini A, Antón R, Salager J-L (2010) Effect of temperature and other variables on the optimum formulation of anionic extended surfactant–alkane–brine systems. J Surfact Deterg 13(1):69-73. doi:10.1007/s11743-009-1142-6

    Article  Google Scholar 

  43. Shinoda K, Kunieda H (1982) Phase behavior in systems of nonionic-surfactant/water/oil around the hydrophile-lipophile-balance-temperature (HLB-temperature). J Dispersion Sci Technol 3:233–244

    Article  Google Scholar 

  44. Kahlweit M, Strey R (1988) Phase behavior of quinary mixtures of the type H2O-oil-nonionic amphiphile-ionic amphiphile-salt. J Phys Chem 92:1557–1563

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank George Smith from Huntsman Corporation (The Woodlands, TX) for providing the extended surfactant sample. Funding for this work was provided by industrial sponsors of the Institute for Applied Surfactant Research at the University of Oklahoma: CESI Chemical, Church & Dwight, Clorox, Conoco Phillips, Ecolab, GlaxoSmithKline, Haliburton Services, Huntsman, InVia Westvaco, Novus, Procter and Gamble, Phillips 66, Sasol, SC Johnson and Shell Chemicals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Sabatini.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Do, L.D., Attaphong, C., Scamehorn, J.F. et al. Detergency of Vegetable Oils and Semi-Solid Fats Using Microemulsion Mixtures of Anionic Extended Surfactants: The HLD Concept and Cold Water Applications. J Surfact Deterg 18, 373–382 (2015). https://doi.org/10.1007/s11743-014-1659-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-014-1659-1

Keywords

  • Microemulsion
  • Vegetable oil
  • Semi-solid fats
  • Cold detergency
  • Extended surfactant
  • Hydrophilic–lipophilic deviation