Journal of Surfactants and Detergents

, Volume 18, Issue 1, pp 9–16 | Cite as

Influence of Some Hofmeister Anions on the Krafft Temperature and Micelle Formation of Cetylpyridinium Bromide in Aqueous Solution

  • Md. Nazrul Islam
  • Khokan Chandra Sarker
  • Komol Kanta Sharker
Original Article


In this work, the effect of some Hofmeister anions on the Krafft temperature (T K) and micelle formation of cetylpyridinium bromide (CPB) have been studied. The results show that more chaotropic anions increase, while the less chaotropic ones lower the T K of the surfactant. More chaotropic I and SCN form contact ion pairs with the cetylpyridinium ion and reduce the electrostatic repulsion between the CPB molecules. As a result, these ions show salting-out behavior, with a consequent increase in the T K. In contrast, less chaotropic Cl and NO3 increase the activity of free water molecules and enhance hydration of CPB molecules, showing a decrease in the T K. A rather unusual behavior was observed in the case of SO4 2− and F. These strong kosmotropes shift from their usual position in the Hofmeister series and behave like moderate chaotropes, lowering the T K of the surfactant. Because of the high charge density and the strong tendency for hydration these ions preferentially remain in the bulk. Rather than forming contact ion pairs, these ions stay away from the CPB molecules, decreasing the T K of the surfactant. In term of decreasing the T K, the ions follow the order NO3  > SO4 2− > Cl > F > Br > SCN > I. The critical micelle concentration (CMC) of the surfactant decreases significantly in the presence of these ions due to the screening of the micelle surface charge by the excess counterions. The decreasing trend of the CMC in the presence of the salts follows the order SCN > I > SO4 2− > NO3  > Br > Cl > F.


Cationic surfactant Krafft temperature Critical micelle concentrations Hofmeister anions 



MNI is grateful for the financial assistance (CASR-243/67) approved by the Committee for Advanced Studies and Research (CASR), Bangladesh University of Engineering and Technology (BUET) for carrying out the present research.


  1. 1.
    Myers D (2004) Surfactant science and technology, 3rd edn. Wiley Interscience, New JerseyGoogle Scholar
  2. 2.
    Rosen MJ (2006) Surfactants and interfacial phenomena, 3rd edn. Wiley Interscience, New YorkGoogle Scholar
  3. 3.
    Tsuji K, Mino J (1978) Krafft point depression of some zwitterionic surfactants by inorganic salts. J Phys Chem 82:1610–1614CrossRefGoogle Scholar
  4. 4.
    Chu Z, Feng YJ (2012) Empirical correlations between Krafft temperature and tail length for amidosulfobetaine surfactants in the presence of inorganic salt. Langmuir 28:1175–1181CrossRefGoogle Scholar
  5. 5.
    Nakayama H, Shinoda K (1967) The effect of added salts on the solubilities and Krafft points of sodium dodecyl sulfate and potassium perfluoro-octanoate. Bull Chem Soc Jpn 40:1797–1799CrossRefGoogle Scholar
  6. 6.
    Shinoda K, Yamaguchi N, Carlsson A (1989) Physical meaning of the Krafft point: observation of melting phenomenon of hydrated solid surfactant at the Krafft point. J Phys Chem 93:7216–7218CrossRefGoogle Scholar
  7. 7.
    Carolina V-G, Bales BL (2003) Estimate of the ionization degree of ionic micelles based on Krafft temperature measurements. J Phys Chem B 107:5398–5403CrossRefGoogle Scholar
  8. 8.
    Bakshi MS, Sood R (2004) Cationic surfactant–poly(amido amine) dendrimer interactions studied by Krafft temperature measurements. Colloids Surf A 233:203–210CrossRefGoogle Scholar
  9. 9.
    Islam MN, Sarker KC, Akhtaruzzaman G (2014) Effect of electrolytes on the Krafft temperature of cetylpyridinium chloride in aqueous solution. J Surfact Deterg 17:525–530CrossRefGoogle Scholar
  10. 10.
    Iglauer S, Wu Y, Shuler P, Tang Y, Goddard WA (2010) New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential. J Pet Sci Eng 71:23–29CrossRefGoogle Scholar
  11. 11.
    Vijayan S, Ramachandran C, Shah DO (1981) Effect of salt and aging on surfactant formulation for enhanced oil recovery: a correlation of physical properties with microsctructure using spin-labels. J Am Oil Chem Soc 58:566–573CrossRefGoogle Scholar
  12. 12.
    Diamant H, Andelman D (1996) Kinetics of surfactant adsorption at fluid–fluid interfaces. J Phys Chem 100:13732–13742CrossRefGoogle Scholar
  13. 13.
    Michele AD, Brinchi L, Profio PD, Germani R, Sawelli G, Onori G (2011) Effect of head group size, temperature and counterion specificity on cationic micelles. J Colloid Interface Sci 358:160–166CrossRefGoogle Scholar
  14. 14.
    Mata J, Varade D, Bahadur P (2005) Aggregation behavior of quaternary salt based cationic surfactants. Thermochim Acta 428:147–155CrossRefGoogle Scholar
  15. 15.
    Bojan S, Marija B-R (2009) Temperature and salt-induced micellization of dodecyltrimethylammonium chloride in aqueous solution: a thermodynamic study. J Colloid Interface Sci 338:216–221CrossRefGoogle Scholar
  16. 16.
    Nakahara H, Shibata O, Moroi Y (2011) Examination of surface adsorption of cetyltrimethylammonium bromide and sodium dodecyl sulfate. J Phys Chem B 115:9077–9086CrossRefGoogle Scholar
  17. 17.
    Mukhim T, Dey J, Das S, Ismail K (2010) Aggregation and adsorption behavior of cetylpyridinium chloride in aqueous sodium salicylate and sodium benzoate solutions. J Colloid Interface Sci 350:511–515CrossRefGoogle Scholar
  18. 18.
    Sugihara G, Hisatomi M (1998) Roles of counterion binding in the micelle formation of ionic surfactants in water. J Jpn Oil Chem Soc 47:661–683CrossRefGoogle Scholar
  19. 19.
    Mesa CL, Ranieri GA, Terenzi M (1988) Studies on Krafft point solubility in surfactant solutions. Thermochim Acta 137:143–150CrossRefGoogle Scholar
  20. 20.
    Heckmann K, Schwarz R, Strnad J (1987) Determination of Krafft point and CMC of hexadecylpyridinium bromide in electrolytes solutions. J Colloid Interface Sci 120:114–117CrossRefGoogle Scholar
  21. 21.
    Jarvis NL, Schelman MA (1968) Surface potentials of aqueous electrolyte solutions. J Phys Chem 72:74–78CrossRefGoogle Scholar
  22. 22.
    Pegram LM, Record MTJ (2007) Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air–water interface. J Phys Chem 111:5411–5417CrossRefGoogle Scholar
  23. 23.
    Lund M, Vacha R, Jungwirth P (2008) Specific ion binding to macromolecules: effects of hydrophobicity and ion pairing. Langmuir 24:3387–3391CrossRefGoogle Scholar
  24. 24.
    Paluch M (2000) Electrical properties of free surface of water and aqueous solutions. Adv Colloid Interface Sci 84:27–45CrossRefGoogle Scholar
  25. 25.
    Jungwirth P, Tobias DJ (2006) Specific ion effects at the air/water interface. Chem Rev 106:1259–1281CrossRefGoogle Scholar
  26. 26.
    Petersen MK, Iyengar SS, Day TJF, Voth GA (2004) The hydrated proton at the water liquid/vapor interface. J Phys Chem B 108:14804–14806CrossRefGoogle Scholar
  27. 27.
    Zhang Y, Cremer PS (2010) Chemistry of Hofmeister anions and osmolytes. Annu Rev Phys Chem 61:63–83CrossRefGoogle Scholar
  28. 28.
    Gurau MC, Lim S-M, Castellana ET, Albertono F, Kotaoka S, Cremer PS (2004) On the mechanism of the Hofmeister effect. J Am Chem Soc 126:10522–10523CrossRefGoogle Scholar
  29. 29.
    Collins KD (2012) Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion–protein interactions. Biophys Chem 167:43–59CrossRefGoogle Scholar
  30. 30.
    Collins KD, Neilson GW, Enderby JE (2007) Ions in water: characterizing the forces that control chemical processes and biological structure. Biophys Chem 128:95–104CrossRefGoogle Scholar
  31. 31.
    Abezgauz L, Kuperkar K, Hassan PA, Ramon O, Bahadur P, Danino D (2010) Effect of Hofmeister anions on micellization and micellar growth of the surfactant cetylpyridinium chloride. J Colloid Interface Sci 342:83–92CrossRefGoogle Scholar
  32. 32.
    Mason PE, Neilson GW, Dempsey CE, Barnes AC, Cruickshank JM (2003) The hydration structure of guanidinium and thiocyanate ions: implications for protein stability in aqueous solution. Proc Nat Aca Sci 100:4557–4561CrossRefGoogle Scholar
  33. 33.
    Santos APD, Levin Y (2013) Surface and interfacial tensions of Hofmeister electrolytes. Faraday Discuss 160:75–87CrossRefGoogle Scholar
  34. 34.
    Lee JD (1991) Inorganic chemistry, 4th edn. ELBS, Singapore, p 300Google Scholar
  35. 35.
    Petersen PB, Saykally RJ (2005) Adsorption of ions to the surface of dilute electrolyte solutions: the Jones-Ray effect revisited. J Am Chem Soc 127:15446–15452CrossRefGoogle Scholar
  36. 36.
    Dole M (1939) A theory of surface tension of aqueous solutions. Faraday Discuss 60:904–911Google Scholar
  37. 37.
    Manciu M, Ruckenstein E (2003) Specific ion effects via ion hydration: I. Surface tension. Adv Colloid Interface Sci 105:63–101CrossRefGoogle Scholar
  38. 38.
    Cheng J, Vecitis CD, Hoffmann MR, Colussi AJ (2006) Experimental anion affinities for the air/water interface. J Phys Chem 110:25598–25602CrossRefGoogle Scholar
  39. 39.
    Endom L, Hertz HG, Thul B, Zeidler MD (1967) A microdynamic model of electrolyte solutions as derived from nuclear relaxation and self-diffusion data. Dtsch Bunsenges Phys Chem 71:1008–1031Google Scholar
  40. 40.
    Margolis EJ (1966) Chemical principles in calculations of ionic equilibria. Macmilian, New York, p 45Google Scholar
  41. 41.
    Glasstone S (1947) Thermodynamics for chemists, 3rd edn. Litton Educational Publishing Inc, New YorkGoogle Scholar
  42. 42.
    Chen X, Sarah C, Flores SC, Lim S-M, Zhang Y, Yang T, Kherb J, Cremer PS (2010) Specific anion effects on water structure adjacent to protein monolayers. Langmuir 26:16447–16454CrossRefGoogle Scholar
  43. 43.
    Zhang L, Somasundaran P, Maltesh C (1996) Electrolyte effects on the surface tension and micellization of n-dodecyl β-d-maltoside solutions. Langmuir 12:2371–2373CrossRefGoogle Scholar
  44. 44.
    Arosio P, Jaquet B, Wu H, Morbidelli M (2012) On the role of salt type and concentration on the stability behavior of a monoclonal antibody solution. Biophys Chem 168(169):19–27CrossRefGoogle Scholar
  45. 45.
    Ropers MH, Czichocki G, Brezesinski G (2003) Counterion effect on the thermodynamics of micellization of alkyl sulfates. J Phys Chem B 107:5281–5288CrossRefGoogle Scholar
  46. 46.
    Srinivasan V, Blankschtein D (2003) Effect of counterion binding on micellar solution behavior: 2. Prediction of micellar solution properties of ionic surfactant-electrolyte systems. Langmuir 19:9946–9961CrossRefGoogle Scholar
  47. 47.
    Onoratoa RM, Ottena DE, Saykallya RJ (2009) Adsorption of thiocyanate ions to the dodecanol/water interface characterized by UV second harmonic generation. Proc Nat Aca Sci 106:15176–15180CrossRefGoogle Scholar
  48. 48.
    Nishikido N, Matauura R (1977) The effect of added inorganic salts on the micelle formation of micelle formation in aqueous solution. Bull Chem Soc Jpn 50:1690CrossRefGoogle Scholar

Copyright information

© AOCS 2014

Authors and Affiliations

  • Md. Nazrul Islam
    • 1
  • Khokan Chandra Sarker
    • 1
  • Komol Kanta Sharker
    • 1
  1. 1.Department of ChemistryBangladesh University of Engineering and TechnologyDhakaBangladesh

Personalised recommendations