Skip to main content
Log in

Study of Solubility Efficiency of Polycyclic Aromatic Hydrocarbons in Single Surfactant Systems

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Water solubility enhancements of two polycyclic aromatic hydrocarbons i.e., naphthalene (Naph) and anthracene (Anth) in single surfactants system have been measured by UV–VIS-Spectrophotometer. The relationships between solubilizing capacity and their solubilization efficiency towards polycyclic aromatic hydrocarbons (PAH) have been quantified and discussed in terms of the molar solubilization ratio (MSR), the micelle-water partition coefficient (K m) and standard free energy of solubilization (ΔG°s). The micellar and surface properties of some cationic and anionic surfactants have been investigated by conductivity, surface tension and fluorescence measurements at 300 K. Above the CMC, maximum solubilization occurs in cationic surfactants where as the solubilization is least in the presence of anionic surfactants. The negative value of ΔG°s shows spontaneity of the solubilization process. The MSR values are larger in naphthalene than anthracene (Naph > Anth). The present studies provide valuable information for the selection of surfactants for solubilizing water-insoluble compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme I
Scheme II
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kabir-ud-Din, Shafi M, Bhat PA, Dar AA (2009) Solubilization capabilities of mixtures of cationic gemini surfactant with conventional cationic, nonionic and anionic surfactants towards polycyclic aromatic hydrocarbons. J Hazard Mater 167:575–581

    Article  CAS  Google Scholar 

  2. Ansari WH, Fatma N, Panda M, Kabir-ud-Din (2013) Solubilization of polycyclic aromatic hydrocarbons by novel biodegradable cationic gemini surfactant ethane-1,2-diyl bis(N,N-dimethyl-N-hexadecylammoniumacetoxy) dichloride and its binary mixtures with conventional surfactants. Soft Matter 9:1478–1487

    Article  CAS  Google Scholar 

  3. Yu H, Huang G, Wei J, An C (2011) Solubilization of mixed polycyclic aromatic hydrocarbons through a rhamnolipid biosurfactant. J Environ Qual 40:477–483

    Article  CAS  Google Scholar 

  4. Khan S, Cao Q (2012) Human health risk due to consumption of vegetables contaminated with carcinogenic polycyclic aromatic hydrocarbons. J Soils Sediments 12:178–184

    Article  Google Scholar 

  5. Liu Y, Shen J, Chen Z, Ren N, Li Y (2013) Distribution of polycyclic aromatic hydrocarbons in surface water and sediment near a drinking water reservoir in northeastern china, Environ Sci Pollut Res 20:2535–2545

    Google Scholar 

  6. Lu R, Sheng GP, Liang Y, Li WH, Tong ZH, Chen W, Yu HQ (2013) Characterizing the interactions between polycyclic aromatic hydrocarbons and fulvic acids in water. Environ Sci Pollut Res 20:2220–2225

    Google Scholar 

  7. Garon D, Krivobok S, Wouessidjewe D, Murandi FS (2002) Influence of surfactants on solubilization and fungal degradation of fluorine. Chemosphere 47:303–309

    Article  CAS  Google Scholar 

  8. Bruna F, Celis R, Real M, Cornejo J (2012) Organo/LDH nanocomposite as an adsorbent of polycyclic aromatic hydrocarbons in water and soil–water systems. J Hazard Mater 225:74–80

    Article  Google Scholar 

  9. Cameotra SS, Bollag JM (2003) Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons. Environ Sci Technol 30:111–126

    Google Scholar 

  10. Lu L, Zhu L (2012) Effect of a cationic surfactant on the volatilization of PAH from soil. Environ Sci Pollut Res 19:1515–1523

    Article  CAS  Google Scholar 

  11. Chun CL, Lee JJ, Park JW (2002) Solubilization of PAH mixtures by three different anionic surfactants. Environ Pollut 118:307–313

    Article  CAS  Google Scholar 

  12. Zhu L, Zhao B, Li Z (2003) Water solubility enhancements of PAH by sodium castor oil sulfonate microemultions. J Environ Sci 15:583–589

    CAS  Google Scholar 

  13. Rao KJ, Paria S (2009) Solubilization of napthalene in the presence of plant-synthetic mixed surfactant systems. J Phys Chem B 113:474–481

    Article  CAS  Google Scholar 

  14. Pullmannova P, Funari SS, Devinsky F, Uhrikova D (2012) The DNA–DNA spacing in gemini surfactants–DOPE–DNA complexes. Biochim Biophys Acta 1818:2725–2731

    Article  CAS  Google Scholar 

  15. Kobayashi T, Kaminaga H, Navarro RR, Iimura Y (2012) Application of aqueous saponin on remediation of polycyclic aromatic hydrocarbons-contaminated soil. J Environ Sci Health 47:1138–1145

    Article  CAS  Google Scholar 

  16. Bernardez LA (2012) Effects of flow rate and temperature on the dissolution of polycyclic aromatic hydrocarbons transferring from a nonaqueous phase liquid to nonionic surfactant solutions. Chem Eng Commun 199:151–163

    Article  CAS  Google Scholar 

  17. Tikariha D, Ghosh KK, Quagliotto P, Ghosh S (2010) Mixed micellization properties of cationic monomeric and gemini surfactants. J Chem Eng Data 55:4162–4167

    Article  CAS  Google Scholar 

  18. Mohamed MM, Bayoumy WA, Khairy M, Mousa MA (2007) Synthesis of micro–mesoporous TiO2 materials assembled via cationic surfactants: morphology, thermal stability and surface acidity characteristics. Microporous Mesoporous Mater 103:174–183

    Article  CAS  Google Scholar 

  19. Swe MM, Yu LE, Hung KC, Chen BH (2006) Solubilization of selected polycyclic aromatic compounds by nonionic surfactants. J Surf Deterg 9:237–244

    Article  CAS  Google Scholar 

  20. Yeom IT, Ghosh MM, Cox CD (1996) Kinetic aspects of surfactant solubilization of soil-bound polycyclic aromatic hydrocarbons. Environ Sci Technol 30:1589–1595

    Article  CAS  Google Scholar 

  21. Singh RP, Khan NU, Srivastava G (2012) Effect of CPC, brij-35, and SDBS surfactants on the adsorption and movement of carbofuran in Indian soils. Soil Sediment Contam 21:255–275

    Article  CAS  Google Scholar 

  22. Sansanwal PK (2006) Effect of co-solutes on the physico-chemical properties of surfactant solutions. J Sci Ind Res 65:57–64

    CAS  Google Scholar 

  23. Prasad M, Moulik SP (2004) Self aggregation of alkyltriphenylphosphonium bromides and their 1:1 molar mixtures in aqueous medium: a thermodynamic study. J Phys Chem B 108:355–362

    Article  CAS  Google Scholar 

  24. Shrivastava A, Ghosh KK (2008) Micellization of cetyltriphenylphosphonium bromide surfactant in binary aqueous solvents. J Surf Deterg 11:287–292

    Article  CAS  Google Scholar 

  25. Miguel VS, Peinado C, Catalina F, Abrusci F (2009) Bioremediation of naphthalene in water by Sphingomonas paucimobilis using new biodegradable surfactants based on poly (ε-caprolactone). Int Biodet Biodeg 63:217–223

    Article  Google Scholar 

  26. Yap CL, Gan S, Ng HK (2012) Evaluation of solubility of polycyclic aromatic hydrocarbons in ethyl lactate/water versus ethanol/water mixtures for contaminated soil remediation applications. J Environ Sci 24:1064–1075

    Article  CAS  Google Scholar 

  27. Guha S, Jaffe PR, Peters CA (1998) Solubilization of PAH mixtures by a nonionic surfactant. Environ Sci Technol 32:930–935

    Article  CAS  Google Scholar 

  28. Sales PS, de Rossi RH, Fernandez MA (2011) Different behaviours in the solubilization of polycyclic aromatic hydrocarbons in water induced by mixed surfactant solutions. Chemosphere 84:1700–1707

    Article  CAS  Google Scholar 

  29. Zhao B, Zhu L, Li W, Chen B (2005) Solubilization and biodegradation of phenanthrene in mixed anionic–nonionic surfactant solutions. Chemosphere 58:33–40

    Article  CAS  Google Scholar 

  30. Zhou W, Zhu L (2005) Distribution of polycyclic aromatic hydrocarbons in soil–water system containing a nonionic surfactant. Chemosphere 60:1237–1245

    Article  CAS  Google Scholar 

  31. Karasek P, Planeta J, Roth M (2006) Solubility of solid polycyclic aromatic hydrocarbons in pressurized hot water: correlation with pure component properties. Ind Eng Chem Res 45:4454–4460

    Article  CAS  Google Scholar 

  32. An YJ, Jeong SW (2001) Interactions of perfluorinated surfactant with polycyclic aromatic hydrocarbons: critical micelle concentration and solubility enhancement measurements. J Colloid Interface Sci 242:419–424

    Article  CAS  Google Scholar 

  33. Paria S, Yuet PK (2006) Solubilization of naphthalene by pure and mixed surfactants. Ind Eng Chem Res 45:3552–3558

    Article  CAS  Google Scholar 

  34. Dar AA, Rather GM, Das AR (2007) Mixed micelle formation and solubilization behaviour toward polycyclic aromatic hydrocarbons of binary and ternary cationic-nonionic surfactant mixtures. J Phys Chem B 111:3122–3132

    Article  CAS  Google Scholar 

  35. Gharanjig K, Kiakhani MS, Bagha ART, Khosravi A, Menger FM (2011) Solubility of two disperse dyes derived from N-Alkyl and N-carboxylic acid naphthalimides in the presence of gemini cationic surfactants. J Surf Deterg 14:381–389

    Article  CAS  Google Scholar 

  36. Kabir-ud-din, Sheikh MS, Dar AA (2010) Analysis of the mixed micellar and interfacial behaviour of cationic gemini hexanediyl-1,6-bis(dimethylcetylammonium bromide) with conventional ionic and nonionic surfactants in aqueous medium. J Phys Chem B 114:6023–6032

    Article  Google Scholar 

  37. Wei J, Huang G, Zhu L, Zhao S, An C, Fan Y (2012) Enhanced aqueous solubility of naphthalene and pyrene by binary and ternary gemini cationic and conventional nonionic surfactants. Chemosphere 89:1347–1353

    Google Scholar 

  38. Zhu L, Feng S (2003) Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic-nonionic surfactants. Chemosphere 53:459–467

    Article  CAS  Google Scholar 

  39. Quagliotto P, Barbero N, Barolo C, Costabello K, Marchese L, Coluccia S, Kalyanasundaramd K, Viscardi G (2009) Characterization of monomeric and gemini cationic amphiphilic molecules by fluorescence intensity and anisotropy. Dyes Pigm 82:124–129

    Article  CAS  Google Scholar 

  40. Dominguez A, Fernandez A, Gonzalez N, Iglesias E, Montenegro L (1997) Determination of critical micelle concentration of some surfactants by three techniques. J Chem Edu 74:1227–1231

    Article  CAS  Google Scholar 

  41. Panda M, Kabir-ud-Din (2011) Study of surface and solution properties of gemini-conventional surfactant mixtures and their effects on solubilization of polycyclic aromatic hydrocarbons. J Mol Liq 163:93–98

    Article  CAS  Google Scholar 

  42. Asakawa T, Hashikawa M, Amada K, Miyagishi S (1995) Effect of urea on micelle formation of fluorocarbon surfactants. Langmuir 11:2376–2379

    Article  CAS  Google Scholar 

  43. Khan IA, Mohammad R, Alam MS, Kabir-ud-din (2010) Surface properties and mixed micellization of cationic gemini surfactants with ethyleneamines. J Chem Eng Data 55:370–380

    Article  CAS  Google Scholar 

  44. Goddard GD, Turro NJ, Kuo PL (1985) Fluorescence probe for critical micelle concentration determination. Langmuir 1:352–357

    Article  CAS  Google Scholar 

  45. Zana R, Levy H, Kwetkat K (1998) Mixed micellization of dimeric (gemini) surfactants and conventional surfactants. I. Mixtures of an anionic dimeric surfactant and of the non ionic surfactants C12E5 and C12E8. J Colloid Interface Sci 197:370–376

    Article  CAS  Google Scholar 

  46. Aguiar J, Carpena P, Molina-Bolivar JA, Ruiz CC (2003) On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J Colloid Interface Sci 258:116–122

    Article  CAS  Google Scholar 

  47. Bhattarai A, Shah SK, Yadav AK (2012) Effect of solvent composition on the critical micelle concentration of cetylpyridinium chloride in ethanol-water mixed solvent media. Nepal J Sci Technol 13:89–93

    Google Scholar 

  48. Bhattacharya S, Haldar J (2005) Microcalorimetric and conductivity studies with micelles prepared from multi-headed pyridinium surfactants. Langmuir 21:5747–5751

    Article  CAS  Google Scholar 

  49. Ruiz CC (1999) Thermodynamics of micellization of tetradecyltrimethylammonium bromide in ethylene glycol-water binary mixtures. Colloid Polym Sci 277:701–707

    Article  Google Scholar 

  50. Bakshi MS, Kaur I, Sood R, Singh J, Singh K, Sachar S, Singh KJ, Kaur G (2004) Mixed micelles of benzyldimethyltetradecylammonium chloride with tetradecyl trimethyl ammonium and tetradecyltriphenylphosphonium bromides: a head group contribution. J Colloid Interface Sci 271:227–231

    Article  CAS  Google Scholar 

  51. Verma SK, Ghosh KK (2011) Micellar and surface properties of some monomeric surfactants and a gemini cationic surfactant. J Surf Deterg 14:347–352

    Article  CAS  Google Scholar 

  52. Bal S, Satnami ML, Kolay S, Palepu RM, Dafonte PR, Ghosh KK (2007) Kinetic studies of micelle assisted reaction of p-nitrophenyl acetate with benzohydroxmate ion in water ethylene glycol mixture. J Surface Sci Technol 23:33–48

    CAS  Google Scholar 

  53. Sheikh MS, Kabir-ud-Din Dar AA (2011) Synergistic interaction of gemini surfactant pentanediyl-1,5-bis(dimethylcetylammonium bromide) with conventional (ionic and nonionic) surfactants and its impact on the solubilization. Colloids Surf A 378:60–66

    Article  CAS  Google Scholar 

  54. Rangel-Yagui CO, Hsu HWL, Pessoa A Jr, Tavares LC (2005) Micellar solubilization of ibuprofen-influence of surfactant head groups on the extent of solubilization. Brazilian J Pharm Sci 41:237–246

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support of this work by the CSIR, New Delhi, India [Project No: 02/(0063)/12/EMR-II] is gratefully acknowledged. JL is grateful for receiving the Rajiv Gandhi National Fellowship of the University Grant Commission, New Delhi, Government of India. TY is grateful to Pt. Ravishankar Shukla University, Raipur, India for her university fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kallol K. Ghosh.

About this article

Cite this article

Lakra, J., Tikariha, D., Yadav, T. et al. Study of Solubility Efficiency of Polycyclic Aromatic Hydrocarbons in Single Surfactant Systems. J Surfact Deterg 16, 957–966 (2013). https://doi.org/10.1007/s11743-013-1507-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-013-1507-8

Keywords

Navigation