Advertisement

Journal of Surfactants and Detergents

, Volume 17, Issue 2, pp 309–321 | Cite as

Amphiphilic Properties of Dodecylammonium Chloride/4-(1-Pentylheptyl) Benzene Sodium Sulfonate Aqueous Mixtures and Study of the Catanionic Complex

  • Tea MiheljEmail author
  • Vlasta Tomašić
Original Article

Abstract

Surfactants are often used in supramolecular chemistry, due to their ability to self-organize. Surfactant molecules aggregate spontaneously and reversibly to adopt a defined intermolecular arrangement. In this work, general phase behavior, adsorption and association in aqueous mixtures of dodecylammonium chloride, DACl and sodium 4-(1-pentylheptyl) benzenesulfonate, NaDBS, were studied by a combination of techniques including surface tension and conductivity measurements, light scattering and optical microscopy. The strong synergistic properties of the system were brought out with the Regular Solution Theory. Various colloidal objects are observed in wide range of composition: conventional small vesicles, large giant multilamellar or multivesicular vesicles. An excess of NaDBS provides extremely large tubular and elongated multilamellar vesicles. The new catanionic 1:1 complex, dodecylammonium-4-(1-pentylheptyl) benzenesulfonate, formed in the equimolar conditions is a result of intramolecular charge neutralization. The thermal properties of this solid compound were examined by thermal polarizing microscopy, differential scanning calorimetry, and X-ray diffraction. The most probable ion-pair amphiphilic cluster of the crystal smectic phase, at room temperature, consists of ionic groups formed in ordered layers with dodecyl chains packed into somewhat disordered layers, tilted to the layer plane.

Keywords

Surfactant mixtures Catanionic surfactant Mesomorphism Wide angle X-ray scattering Dodecylammonium-4-(1-pentylheptyl) benzenesulfonate 

Notes

Acknowledgments

The authors are pleased to acknowledge support of this work by the Ministry of the Science, Education, and Sport of the Republic of Croatia (Project No 098-0982915-2949). We are grateful to mr. sc. Vesna Vrdoljak in realization of partial precipitation diagram, to dr. sc. Dubravka Matković-Čalogović, Faculty of Science, University of Zagreb, for the X-ray diffraction measurements of the samples, and to Nikola Paić for his help with the manuscript preparation.

References

  1. 1.
    Jokela P, Joensson B, Khan A (1987) Phase equilibria of catanionic surfactant-water systems. J Phys Chem 91:3291–3298CrossRefGoogle Scholar
  2. 2.
    Marques E, Khan A, da Graca Miguel M, Lindman B (1993) Self-assembly in mixtures of a cationic and an anionic surfactant: the sodium dodecyl sulfate-didodecyldimethylammonium bromide-water system. J Phys Chem 97:4729–4736Google Scholar
  3. 3.
    Tomašić V, Popović S, Filipović-Vinceković N (1999) Solid state transitions of asymmetric catanionic surfactants. J Colloid Interface Sci 215:280–289CrossRefGoogle Scholar
  4. 4.
    Filipović-Vinceković N, Pucić I, Popović S, Tomašić V, Težak Đ (1997) Solid-phase transitions of catanionic surfactants. J Colloid Interface Sci 188:396–403CrossRefGoogle Scholar
  5. 5.
    Kaler EW, Murthy AK, Rodriguez BE, Zasadzinski JA (1989) Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science 245:1371–1374CrossRefGoogle Scholar
  6. 6.
    Kaler EW, Herrington KL, Murthy AK, Zasadzinski JAN (1992) Phase behavior and structures of mixtures of anionic and cationic surfactants. J Phys Chem 96:6698–6707CrossRefGoogle Scholar
  7. 7.
    Rosen MJ, Li F, Morrall SW, Versteeg DJ (2001) The relationship between the interfacial properties of surfactants and their toxicity to aquatic organisms. Environ Sci Technol 35:954–959CrossRefGoogle Scholar
  8. 8.
    Mungray AK, Kumar P (2009) Fate of linear alkylbenzene sulfonates in the environment: a review. Int Biodeter Biodegr 63:981–987CrossRefGoogle Scholar
  9. 9.
    Ma J-G, Boyd BJ, Drummond CJ (2006) Positional isomers of linear sodium dodecyl benzene sulfonate: solubility, self-assembly, and air/water interfacial activity. Langmuir 22:8646–8654CrossRefGoogle Scholar
  10. 10.
    Das S, Bhirud RG, Nayyar N et al (1992) Chemical shift changes on micellization of linear alkyl benzenesulfonate and oleate. J Phys Chem 96:7454–7457CrossRefGoogle Scholar
  11. 11.
    Van Os NM, Daane GJ, Bolsman TAB (1987) The effect of chemical structure upon the thermodynamics of micellization of model alkylarenesulphonates: I. Sodium p-(x-Decyl)benzenesulphonate isomers. J Colloid Interface Sci 115:402–409CrossRefGoogle Scholar
  12. 12.
    Chakraborty S, Chakraborty A, Ali M, Saha SK (2010) Surface and bulk properties of dodecylbenzenesulphonate in aqueous medium: role of the nature of counterions. J Dispers Sci Technol 31:209–215CrossRefGoogle Scholar
  13. 13.
    TomaŠić V, Štefanić Z, Filipović-Vinceković N (1999) Adsorption, association and precipitation in hexadecyltrimethylammonium bromide/sodium dodecyl sulfate mixtures. Colloid Polym Sci 277:153–163CrossRefGoogle Scholar
  14. 14.
    Filipović-Vinceković N, TomaŠić V (2000) Solid-state transitions of surfactant crystals. In: Garti N (ed) Thermal behavior of dispersed systems. M. Dekker, New York-Basel, pp 451–476Google Scholar
  15. 15.
    Filipović-Vinceković N, TomaŠić V (2002) Solid-phase transitions of ionic surfactants. In: Hubbard A (ed) Encyclopedia of surface and colloid science. M. Dekker, Santa Barbara, pp 4718–4736Google Scholar
  16. 16.
    Ungar G, Tomašić V, Xie F, Zeng X (2009) Structure of liquid crystalline aerosol-OT and its alkylammonium salts. Langmuir 25:11067–11072CrossRefGoogle Scholar
  17. 17.
    Dai Q, Laskowski JS (1991) The Krafft point of dodecylammonium chloride: pH effect. Langmuir 7:1361–1364CrossRefGoogle Scholar
  18. 18.
    Compostizo A, Martín C, Rubio RG, Crespo Colin A (1996) Temperature dependence of the density of an ionic micellar system near the critical point. Chem Phys 212:301–310CrossRefGoogle Scholar
  19. 19.
    Zana R (1980) Ionization of cationic micelles: effect of the detergent structure. J Colloid Interface Sci 78:330–337CrossRefGoogle Scholar
  20. 20.
    Rubingh DN (1979) Mixed micelle solutions. In: Mittal K (ed) Solution chemistry of surfactants. Plenum Press, New York, pp 337–354CrossRefGoogle Scholar
  21. 21.
    Rosen MJ (1989) Surfactants and interfacial phenomena. Wiley, New YorkGoogle Scholar
  22. 22.
    Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2(72):1525CrossRefGoogle Scholar
  23. 23.
    Rosen MJ, Aronson S (1981) Standard free energies of adsorption of surfactants at the aqueous solution/air interface from surface tension data in the vicinity of the critical micelle concentration. Colloids Surf 3:201–208CrossRefGoogle Scholar
  24. 24.
    Šegota S, Horbaschek K, Težak Ð (2001) Structure of sodium 4-(1-pentylheptyl)benzenesulphonate aggregates in water solutions by small angle X-ray scattering. Colloids Surf A 193:109–116CrossRefGoogle Scholar
  25. 25.
    Težak D, Hertel G, Hoffmann H (1991) Phase behaviour of n-alkyl- and bi-alkylbenzenesulphonates. Nematic lyotropics from double chain surfactants. Liq Cryst 10:15–27CrossRefGoogle Scholar
  26. 26.
    Binana-Limbelé W, van Os N, Rupert LA, Zana R (1991) Micelle aggregation numbers in aqueous solutions of sodium alkylbenzenesulfonates. J Colloid Interface Sci 141:157–167CrossRefGoogle Scholar
  27. 27.
    Težak Ð, Jalšenjak N, Punčec S, Martinis M (1997) Fractal approach to the liquid crystal formation of alkylbenzenesulphonates in solutions. Colloids Surf A 128:273–275CrossRefGoogle Scholar
  28. 28.
    Olsson U, Wennerström H (2002) On the ripening of vesicle dispersions. J Phys Chem B 106:5135–5138CrossRefGoogle Scholar
  29. 29.
    Karukstis KK, McCormack SA, McQueen TM, Goto KF (2004) Fluorescence delineation of the surfactant microstructures in the CTAB-sOS-H2O catanionic system. Langmuir 20:64–72CrossRefGoogle Scholar
  30. 30.
    Filipovic-Vincekovic N, Bujan M, Juranovic I (1999) Adsorption and association in binary mixtures of cationic surfactants. J Disp Sci Technol 20:1737–1758Google Scholar
  31. 31.
    Moulik SP, Haque ME, Jana PK, Das AR (1996) Micellar properties of cationic surfactants in pure and mixed states. J Phys Chem 100:701–708CrossRefGoogle Scholar
  32. 32.
    Mehrian T, de Keizer A, Korteweg AJ, Lyklema J (1993) Thermodynamics of micellization of n-alkylpyridinium chlorides. Colloids Surf A 71:255–267CrossRefGoogle Scholar
  33. 33.
    Gotte E, Schwuger MI (1969) Überlegungen und Experimente zum Mechanismus des Waschprozesses mit primären Alkyl Sulfaten. Tenside 6:131–135Google Scholar
  34. 34.
    Ito M, Matsunaga Y, Matsuzaki H, Shimojima S (1989) The thermotropic liquid-crystalline behavior of alkylammonium benzenesulfonates and related salts. Bull Chem Soc Jpn 62:3919–3922Google Scholar
  35. 35.
    Matsunaga Y, Tsujimura T (1991) The thermotropic liquid-crystalline behavior of alkylammonium naphthalenesulfonates. Mol Cryst Liquid Cryst 200:103–108CrossRefGoogle Scholar
  36. 36.
    Lange NA, Dean JA (1979) Lange’s Handbook of chemistry. McGraw-Hill, New YorkGoogle Scholar
  37. 37.
    Saupe A, Maier W (1961) Methods for determining the degree of order in nematic liquid crystal layer. Z Naturforsch 16 a:816Google Scholar

Copyright information

© AOCS 2013

Authors and Affiliations

  1. 1.Department of Physical ChemistryRuđer Bošković InstituteZagrebCroatia

Personalised recommendations