Skip to main content
Log in

Removal of Copper(II) from a Concentrated Sulphate Medium by Cloud Point Extraction Using an N,N′-Bis(salicylaldehyde)Ethylenediimine Di-Schiff Base Chelating Ligand

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Various chelating ligands have been investigated for the cloud point extraction of several metal ions. However, limited studies on the use of the Schiff base ligands have been reported. In this work, cloud point extraction behavior of copper(II) with N,N′-bis(salicylaldehyde)Ethylenediimine Schiff base chelating ligand, (H2SALEN), was investigated in aqueous concentrated sulphate medium. The extraction process used is based on the formation of hydrophobic H2SALEN–copper(II) complexes that are solubilized in the micellar phase of a non-ionic surfactant, i.e. ethoxylated (9.5EO) tert-butylphenol. The copper(II) complexes are then extracted into the surfactant-rich phase above cloud point temperature. Different parameters affecting the extraction process of Cu(II), such as equilibrium pH, extractant concentration, and non-ionic surfactant concentration were explored. The extraction of Cu(II) was studied in the pH range of 2–11. The results obtained showed that it was profoundly influenced by the pH of the aqueous medium. The concentration factor, C f, of about 17 with extraction efficiency of E % ≈100 was achieved. The stoichiometry of the extracted complex of copper(II) was ascertained by the Yoe–Jones method to give a composition of 1:1 (Cu:H2L). The optimum conditions of the extraction-removal have been established as the following: (1) 1.86 × 10−3 mol/L ligand; (2) 3 wt% surfactant; (3) pH of 8 (4) 0.5 mol/L Na2SO4 and (5) temperature of 60 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rydberg J, Musikas C, Choppin GR (1992) Principles and Practice of Solvent Extraction. Marcel Dekker, New York

    Google Scholar 

  2. Watanabe H, Tanaka H (1978) A non-ionic surfactant as a new solvent for liquid extraction of Zinc (II) with 1-(2-pyridylazo)-2-naphthol. Talanta 25:585–589

    Article  CAS  Google Scholar 

  3. Mittal KL, Lindman B (1984) Surfactants in solution (Lund Proceedings), vol 1. Plenum Press, New York

    Book  Google Scholar 

  4. Corti M, Minero C, Degiorgio V (1984) Cloud point transition in nonionic micellar Solutions. J Phys Chem 88:309–317

    Article  CAS  Google Scholar 

  5. McIntire GL (1990) Micelles in analytical chemistry. Crit Rev Anal Chem 21:257–278

    Article  CAS  Google Scholar 

  6. Rosen MJ (1978) Surfactants and interfacial phenomena. Wiley-Interscience, New York

    Google Scholar 

  7. Koshy L, Saiyad AH, Rakshit AK (1996) The effects of various foreign substances on the cloud point of Triton X 100 and Triton X 114. Colloid Polym Sci 274:582–587

    Article  CAS  Google Scholar 

  8. Schott H (1997) Effect of inorganic additives on solutions of nonionic surfactants. XIV. Effect of chaotropic anions on the cloud point of octoxynol 9 (Triton X-100). J Colloid Interface Sci 189:117–122

    Article  CAS  Google Scholar 

  9. Schott H (2003) A linear relation between the cloud point and the number of oxyethylene units of water-soluble nonionic surfactants valid for the entire range of ethoxylation. J Colloid Interface Sci 260:219–224

    Article  CAS  Google Scholar 

  10. Schott H, Royce AE (1984) Effect of inorganic additives on solutions of non-ionic surfactants. VII: Cloud point shift values of individual ions. J Colloid Interface Sci 98:196–201

    CAS  Google Scholar 

  11. Materna K, Cote G, Szymanowski J (2004) Cloud point of aqueous solutions containing oxyethylated methyl dodecanoates: effects of surfactant hydrophilicity, nature of added electrolyte, and water activity. J Colloid Interface Sci 269:466–471

    Article  CAS  Google Scholar 

  12. Sicilia D, Rubio S, Pérez-Bendito D, Maniasso N, Zagatto EAG (1999) Anionic surfactants in acid media: a new cloud point extraction approach for the determination of polycyclic aromatic hydrocarbons in environmental samples. Anal Chim Acta 392:29–38

    Article  CAS  Google Scholar 

  13. Nascentes CC, Aurélio M, Arruda Z (2003) Cloud point formation based on mixed micelles in the presence of electrolytes for cobalt extraction and preconcentration. Talanta 61:759–768

    Article  CAS  Google Scholar 

  14. Ohashi A, Tsugushi A, Imura H, Ohashi K (2004) Cloud point extraction behaviour of aluminum (III) with 2-methyl-8-quinolinol and 3,5-dichlorophenol. Anal Sci 20:1091–1093

    Article  CAS  Google Scholar 

  15. Afkami A, Bahram M, Gholami SZ (2005) Micelle-mediated extraction for the spectrophotometric determination of nitrite in water and biological samples based on its reaction with p-nitroaniline in the presence of diphenylamine. Anal Biochem 336:295–299

    Article  Google Scholar 

  16. Hinze WL, Pramauro E (1993) Critical-review of surfactant-mediated phase separation (cloud point extraction)-theory and applications. Crit Rev Anal Chem 24:133–177

    Article  CAS  Google Scholar 

  17. Stalikas CD (2002) Micelle-mediated extraction as a tool for separation and preconcentration in metal analysis. Trends Anal Chem 21:343–355

    Article  CAS  Google Scholar 

  18. Hadj Youcef M, Benabdallah T, Ilikti H (2006) Study on copper(II) extraction from sulphate medium via cloud- point extraction with N-salicylideneaniline ligand in presence of non-ionic surfactant. Can J Anal Sci Spectrosc 51:267–278

    Google Scholar 

  19. Tani H, Kamidate T, Watanabe H (1997) Micelle-mediated extraction. J Chromatogr A 780:229–241

    Article  CAS  Google Scholar 

  20. Li J, Chen BH (2003) Equilibrium partition of polycyclic aromatic hydrocarbons in a cloud-point extraction process. J Colloid Interface Sci 263:625–632

    Article  CAS  Google Scholar 

  21. Materna K, Milosz I, Miesiac I, Cote G, Szymanowski J (2001) Removal of phenols from aqueous streams by the cloud point extraction technique with oxyethylated methyl dodecanoates as surfactants. Environ Sci Technol 35:2341–2346

    Article  CAS  Google Scholar 

  22. Manzoori JL, Karim-Nezhad G (2004) Development of a cloud point extraction and preconcentration method for Cd and Ni prior to flame atomic absorption spectrometric determination. Anal Chim Acta 521:173–177

    Article  CAS  Google Scholar 

  23. Garrido M, Di-Nezio MS, Lista AG, Palomeque M, Fernadez-Band BS (2004) Cloud-point extraction/preconcentration on-line FIA method for mercury determination. Anal Chim Acta 502:173–177

    Article  CAS  Google Scholar 

  24. Teo KC, Chen J (2001) Determination of manganese in water samples by flame atomic absorption spectrometry after cloud point extraction. Analyst 126:534–537

    Article  CAS  Google Scholar 

  25. Saitoh T, Kimura Y, Kamidata T, Watanabe H, Haragichi K (1989) Distribution equilibria of metal chelates with thiazolylazo dyes between two phases formed from an aqueous micellar solution of a nonionic surfactant. Anal Sci 5:577–581

    Article  CAS  Google Scholar 

  26. Chen J, Teo KC (2001) Determination of cobalt and nickel in water samples by flame atomic absorption spectrometry after cloud point extraction. Anal Chim Acta 434:325–330

    Article  CAS  Google Scholar 

  27. Doroschuck VO, Lelyushok SO, Ishchenko VB, Kulichenko SA (2004) Flame atomic absorption determination of manganese (II) in natural water after cloud point extraction. Talanta 64:853–856

    Article  Google Scholar 

  28. Shimerani F, Abkenar SD, Jamali MR (2005) Determination of cadmium(II), copper(II) and zinc(II) in water samples by flame atomic absorption spectrometry after cloud point extraction. Indian J Chem Sect (A) 44:1211–1214

    Google Scholar 

  29. Ohashi A, Hashimoto T, Imura H, Ohashi K (2007) Cloud point extraction equilibrium of lanthanum(III), europium(III) and lutetium(III) using di(2-ethylhexyl)phosphoric acid and Triton X-100. Talanta 73:893–898

    Article  CAS  Google Scholar 

  30. Mustafina A, Elistratova J, Burilov A, Knyazeva I, Zairov IR, Amirov R, Solovieva S, Konovalov A (2006) Cloud point extraction of lanthanide(III) ions via use of Triton X-100 without and with water-soluble calixarenes as added chelating agents. Talanta 68:863–868

    Article  CAS  Google Scholar 

  31. Spinu C, Kriza A (2000) Co(II), Ni(II) and Cu(II) complexes of bidentate Schiff bases. Acta Chim Slov 47:179–185

    CAS  Google Scholar 

  32. Benabdallah T, Al-Taiar HA, Reffas H (2004) Spectrophotometric studies of the behaviour of multidentate Schiff base ligands with copper(II) in methanol solution. S Afr J Chem 57:33–36

    CAS  Google Scholar 

  33. Ohashi Y (1997) Excitation energy dependence of transient absorptions of [N,N′-o-phenylenebis(salicylideneaminato)]cobalt(II) in DMF solution. Bull Chem Soc Jpn 70:1319–1324

    Article  CAS  Google Scholar 

  34. Cimerman Z, Galic N, Bosner B (1997) The Schiff bases of salicylaldehyde and aminopyridines as highly sensitive analytical reagents. Anal Chim Acta 343:145–153

    Article  CAS  Google Scholar 

  35. Hadj Youcef M, Barkat D, Benabdallah T (2006) Behaviour study of some bidentate o-hydroxy Schiff base extractants in the removal of copper(II) by solvent extraction technique. J Saudi Chem Soc 10:15–20

    Google Scholar 

  36. Shemirani F, Abkenar SD, Mirroshandel AA, Niasari MS, Kozania RR (2003) Preconcentration and speciation of chromium in water samples by atomic absorption spectrometry after cloud-point extraction. Anal Sci 19:1453–1456

    Article  CAS  Google Scholar 

  37. Shemirani F, Jamali MR, Kozani RR, Salavati-Niasari M (2006) Cloud point extraction and preconcentration for the determination of Cu and Ni in natural water by flame atomic absorption spectrometry. Sep Sci Technol 41:3065–3077

    Article  CAS  Google Scholar 

  38. Baghban N, Shabani AMH, Dadfarnia S, Jafari AA (2009) Flame atomic absorption spectrometric determination of trace amounts of cobalt. J Braz Chem Soc 20:832–838

    Article  CAS  Google Scholar 

  39. Sone K, Fukuda Y (1987) Inorganic Thermochromism. Springer, Heidelberg

    Book  Google Scholar 

  40. Aggett J, Richardson RA (1970) Solvent extraction of copper(II) by Schiff’s bases. Anal Chim Acta 50:269–275

    Article  CAS  Google Scholar 

  41. Carvalho BL, Briganti G (1989) Lowering of the miscibility gap in the dioctanoyl phosphatidylcholine-water system by addition of urea. J Phys Chem 93:4283–4286

    Article  Google Scholar 

  42. Laughlin RG (1994) The Aqueous Phase Behavior of Surfactants. Academic Press, London

    Google Scholar 

  43. Mata JP (2006) Hydrodynamic and clouding behavior of Triton X-100 + SDS mixed micellar systems in the presence of sodium chloride. J Dispers Sci Technol 27:49–54

    Article  CAS  Google Scholar 

  44. Valaulikar BC, Manohar C (1985) The mechanism of clouding in Triton X100: the effect of Additives. J Colloid Interface Sci 108:403–406

    Article  CAS  Google Scholar 

  45. De Barros Lins, Neto E, Canselier JP (1998) Cloud-point behaviour and phase separation in liquid-coacervate extraction of phenol. Jorn Com Esp Deterg 28:433–444

    Google Scholar 

  46. Saito H, Shinoda K (1967) The solubilization of hydrocarbons in aqueous solutions of non-ionic surfactants. J Colloid Interface Sci 24:10–15

    Article  CAS  Google Scholar 

  47. Pramauro E (1990) Concentration and removal of chloroaromatic pollutants using micelle-mediated methods. Ann Chim 80:101–109

    CAS  Google Scholar 

  48. Favre-Réguillon A, Draye M, Lebuzit G, Thomas S, Foos J, Cote G, Guy A (2004) Cloud point extraction : an alternative to traditional liquid–liquid extraction for lanthanides(III) separation. Talanta 63:803–806

    Article  Google Scholar 

  49. Fendler JH (1987) Atomic and molecular clusters in membrane mimetic chemistry. Chem Rev 87:877–899

    Article  CAS  Google Scholar 

  50. Tang AN, Jiang DO, Yan XP (2004) Cloud point extraction preconcentration for capillary electrophoresis of metal ions. Anal Chim Acta 507:199–204

    Article  CAS  Google Scholar 

  51. Liang P, Yang J (2010) Cloud point extraction preconcentration and spectrophotometric determination of copper(II) in food and water samples using amino acids as the complexing agent. J Food Comp Analysis 23:95–99

    Article  CAS  Google Scholar 

  52. Shemirani F, Abkenar SD, Khatouni A (2004) Determination of lead and copper in water samples by flame atomic absorption spectrometry after cloud point extraction. Bull Korean Chem Soc 25:1133–1136

    Article  CAS  Google Scholar 

  53. Reffas H, Benabdallah T, Hadj youcef M, Ilikti H (2010) Study on cloud point extraction of copper(II) from an aqueous sulfate medium with N,N′-bis(salicylideneaminoethyl) amine polydentate Schiff base into a nonionic surfactant phase. J Chem Eng Data 55:912–918

    Article  CAS  Google Scholar 

  54. Hinze WL (1992) Annual Report No. 92-269 P 36. Wake Forest University, North Carolina

    Google Scholar 

  55. Silva MF, Fernandez L, Olsina RA, Stacchiola D (1997) Cloud point extraction, preconcentration and spectrophotometric determination of erbium(III)-2-(3,5-dichloro-2-pyridylazo)-5-dimethylaminophenol. Anal Chim Acta 342:229–238

    Article  Google Scholar 

  56. Sicilia D, Rubio S, Pérez-Bendito D (2002) Evaluation of the factors affecting extraction of organic compounds based on the acid-induced phase cloud point approach. Anal Chim Acta 460:13–22

    Article  CAS  Google Scholar 

  57. Yoe JH, Jones JL (1944) Colorimetric determination of iron with disodium-1,2-dihydroxybenzene-3,5-disulphonate. Ind Eng Chem (Anal Ed) 16:111–115

    Article  CAS  Google Scholar 

  58. Kulichenko SA, Doroschuk VO, Lelyoshok SO (2003) The cloud point extraction of copper(II) with monocarboxylic acids into non-ionic surfactant phase. Talanta 59:767–773

    Article  CAS  Google Scholar 

  59. Ghaedi M, Shokrollahi A, Ahmadi F, Rajabi HR, Soylak M (2008) Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry. J Hazard Mater 150:533–540

    Article  CAS  Google Scholar 

  60. Citak D, Tuzen M (2010) A novel preconcentration procedure using cloud point extraction for determination of lead, cobalt and copper in water and food samples using flame atomic absorption spectrometry. Food and Chem Toxicol 48:1399–1404

    Article  CAS  Google Scholar 

  61. Satiroglu N, Arpal C (2008) Cloud point extraction for determination of trace copper in water samples by flame atomic spectrometry. Microchim Acta 162:107–112

    Article  CAS  Google Scholar 

  62. Lemos VA, Santos MS, Santos MJS, Vieira DR, Novaes CG (2007) Determination of copper in water samples by atomic absorption spectrometry after cloud point extraction. Microchim Acta 157:215–222

    Article  CAS  Google Scholar 

  63. Quina FH, Hinze WL (1999) Surfactant-mediated cloud point extraction: an environmentally benign alternative separation approach. Ind Eng Chem Res 38:4150–4168

    Article  CAS  Google Scholar 

  64. Frankewich RP, Hinze WL (1994) Evaluation an optimization of the factors affecting nonionic surfactant-mediated phase separations. Anal Chem 66:944–954

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasnia Reffas.

About this article

Cite this article

Reffas, H., Benabdallah, T., Youcef, M.H. et al. Removal of Copper(II) from a Concentrated Sulphate Medium by Cloud Point Extraction Using an N,N′-Bis(salicylaldehyde)Ethylenediimine Di-Schiff Base Chelating Ligand. J Surfact Deterg 17, 27–35 (2014). https://doi.org/10.1007/s11743-013-1501-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-013-1501-1

Keywords

Navigation