Skip to main content
Log in

Physicochemical Investigation of Biocompatible Mixed Surfactant Reverse Micelles: III. Aqueous NaCl Solubilization, Thermodynamic Parameters of Desolubilization Process and Conductometric Studies

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Solubilization of water and aqueous NaCl in mixed reverse micelles (RMs) comprising sodium bis(2-ethylhexyl) sulfosuccinate (AOT), and polyoxyethylene (20) sorbitan trioleate or polyoxyethylene (20) sorbitan monooleate has been studied at different compositions (X nonionic = 0–1.0) at a total surfactant concentration, S T = 0.10 × 103 mol m−3 in biocompatible oils of different chemical structures; viz., ethyl oleate (EO), isopropyl myristate (IPM) and isopropyl palmitate (IPP) at 303 K. The enhancement in water solubilization (i.e., synergism) has been evidenced by the addition of nonionic surfactant to dioctyl sulfosuccinate/oil(s)/water systems. Addition of NaCl in these systems at different X nonionic enhances their solubilization capacities further until a maximum, ω NaCl,max is reached. ω NaCl,max and [NaCl]max (concentration at which maximization of NaCl solubilization occurs) depend on type of nonionic surfactant, its content (Xnonionic) and oil. A new solubilization efficiency parameter (SP*water or SP*NaCl) has been proposed to compare solubilization phenomena in these oils. The energetic parameters of the desolubilization process of water or aqueous NaCl in single and mixed RMs have been estimated. Energetically, the water dissolution process in oil has been found to be more exothermic as well as more organized in IPP. Overall, the dissolution of water and aqueous NaCl in mixed RMs is entropically driven process. Conductance behavior of these systems in the presence of NaCl has been investigated under different [NaCl] at 303 K. An attempt has been made to give an insight to the mechanism of solubilization phenomena, percolation in conductance and microstructures vis-à-vis role of biocompatible oils in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Paul BK, Moulik SP (2001) Uses and applications of microemulsions. Curr Sci 80:990–1001

    CAS  Google Scholar 

  2. Garti N, Aserin A (2006) Microemulsions for solubilization and delivery of nutraceuticals and drugs. In: Benita S (ed) Microencapsulation methods and industrial applications. Taylor & Francis, New York, pp 345–428

    Google Scholar 

  3. Bagwe RP, Kanicky JR, Palla BJ, Patanjali PK, Shah DO (2001) Improved drug delivery using microemulsions: rationale, recent progress, and new horizons. Crit Rev Ther Drug Carr Syst 18:77–142

    CAS  Google Scholar 

  4. Tenjarala S (1999) Microemulsions: an overview and pharmaceutical applications. Crit Rev Ther Drug Carr Syst 16:461–524

    Google Scholar 

  5. Fanun M (2011) Biocompatible microemulsions. In: Fanun M (ed) Colloids in biotechnology. CRC, New York, pp 417–436

    Google Scholar 

  6. Liu DJ, Ma JM, Cheng HM, Zhao ZG (1998) Solubilization behavior of mixed reverse micelles: effect of surfactant component, electrolyte concentration and solvent. Colloids Surf A 143:59–68

    Article  CAS  Google Scholar 

  7. Li Q, Li T, Wu J (2002) Water solubilization capacity and conductance behaviors of AOT and NaDEHP systems in the presence of additives. Colloids Surf A 197:101–109

    Article  CAS  Google Scholar 

  8. Paul BK, Mitra RK (2005) Water solubilization capacity of mixed reverse micelles: effect of surfactant component, the nature of the oil, and electrolyte concentration. J Colloid Interface Sci 288:261–279

    Article  CAS  Google Scholar 

  9. Liu D, Ma J, Cheng H, Zhao Z (1998) Solubilization in mixed reverse micellar systems of AOT/nonionic surfactants/n-heptane. J Disp Sci Technol 19:599–611

    Article  CAS  Google Scholar 

  10. Liu D, Ma J, Cheng H, Zhao Z (1998) Fluorescence probing of mixed reverse micelles formed with AOT and nonionic surfactants in n-heptane. Colloids Surf A 139:21–26

    Article  CAS  Google Scholar 

  11. Fersht AR, Freeman WH (1985) Enzyme structure and mechanism, New York

  12. Kon-No K, Kitahara A (1972) Secondary solubilization of electrolytes by di-(2-ethylhexyl) sodium sulfosuccinate in cyclohexane solutions. J Colloid Interface Sci 41:47–51

    Article  CAS  Google Scholar 

  13. Kon-No K, Kitahara A (1970) Solubilization of water and secondary solubilization of electrolytes by oil-soluble surfactant solutions in nonaqueous media: I. Dodecylammonium carboxylates. J Colloid Interface Sci 33:124–132

    Article  CAS  Google Scholar 

  14. Kon-No K, Kitahara A (1970) Solubilization of water and secondary solubilization of electrolytes by oil-soluble surfactant solutions in nonaqueous media: II. Polyoxyethylene nonylphenyl ethers. J Colloid Interface Sci 34:221–227

    Article  CAS  Google Scholar 

  15. Mitra RK, Paul BK (2005) Effect of NaCl and temperature on the water solubilization behavior of AOT/nonionics mixed reverse micellar systems stabilized in IPM Oil. Colloids Surf A 255:165–180

    Article  CAS  Google Scholar 

  16. Gu G, Wang W, Yan H (1994) Calorimetric investigation of the solubilization of water-in-sodium dodecylbenzenesulfonate reversed micelles and water-in-oil microemulsions in mixed solvent of n-heptane and n-pentanol. J Colloid Interface Sci 167:87–93

    Article  CAS  Google Scholar 

  17. Ray S, Moulik SP (1995) Phase behavior, transport properties, and thermodynamics of water/AOT/alkanol microemulsion systems. J Colloid Interface Sci 173:28–33

    Article  CAS  Google Scholar 

  18. Mukhopadhyay L, Mitra N, Bhattacharya PK, Moulik SP (1997) Thermodynamics of formation of biological microemulsion (with cinnamic alcohol, aerosol OT, Tween 20, and water) and kinetics of alkaline fading of crystal violet in them. J Colloid Interface Sci 186:1–8

    Article  CAS  Google Scholar 

  19. Mukherjee K, Mukherjee DC, Moulik SP (1997) Thermodynamics of microemulsion formation. J Colloid Interface Sci 187:327–333

    Article  CAS  Google Scholar 

  20. Moulik SP, Das ML, Bhattacharya PK, Das AR (1992) Thermodynamics of microemulsion formation. 1. Enthalpy of solution of water in binary (Triton X 100 + Butanol) and ternary (Heptane + Triton X 100 + Butanol) mixtures and heat capacity of the resulting systems. Langmuir 8:2135–2139

    Article  CAS  Google Scholar 

  21. Ray S, Bisal SR, Moulik SP (1994) Thermodynamics of microemulsion formation. 2. Enthalpy of solution of water in binary mixtures of aerosol OT and heptane and heat capacity of the resulting systems. Langmuir 10:2507–2510

    Article  CAS  Google Scholar 

  22. Hill RM (1993) Applications of surfactant mixtures. In: Ogino K, Abe M (eds) Mixed surfactant systems, surfactant science series 46. Dekker, New York, pp 317–336

    Google Scholar 

  23. Grabner D, Matsuo T, Hoinkis E, Thunig C, Hoffmann H (2001) Sodium and calcium laurylamidomethylsulfate: aqueous micellar phases, their properties, and a precipitate of vesicles. J Colloid Interface Sci 236:1–13

    Article  CAS  Google Scholar 

  24. Lee DH, Chang HW, Cody RD (2004) Synergism effect of mixed surfactant solutions in remediation of soil contaminated with PCE. Geosci J 8:319–323

    Article  Google Scholar 

  25. Kundu K, Paul BK (2013) Physicochemical investigation of mixed surfactant reverse micelles: I. water solubilization and conductometric studies (communicated)

  26. Li Q, Li T, Wu JG (2001) Electrical conductivity of water/sodium bis(2-ethylhexyl) sulfosuccinate/n-heptane and water/sodium bis(2-ethylhexyl) phosphate/n-heptane systems: the influences of water content, bis(2-ethylhexyl) phosphoric acid, and temperature. J Colloid Interface Sci 239:522–527

    Article  CAS  Google Scholar 

  27. Mitra RK, Paul BK (2005) Investigation on percolation in conductance of mixed reverse micelles. Colloids Surf A 252:243–259

    Article  CAS  Google Scholar 

  28. Paul BK, Mitra RK (2006) Conductivity of reverse micellar systems of Water/AOT + Brij-56 or Brij-58/IPM and their percolation under varied concentrations of amphiphiles and different additives. Colloids Surf A 273:129–140

    Article  CAS  Google Scholar 

  29. Das ML, Bhattacharya PK, Moulik SP (1990) Reaction kinetics in microemulsion medium. 1. Inversion of cane sugar in quaternary system of microemulsion containing water/triton X-100/1-butanol/(cholesteryl benzoate + n-Heptane). Langmuir 6:1591–1595

    Article  CAS  Google Scholar 

  30. Ruckenstein E, Karpe P (1991) Enzymatic super- and sub activity in nonionic reverse micelles. J Phys Chem 95:4869–4882

    Article  CAS  Google Scholar 

  31. Fanun M (2009) Microemulsions formation on water/nonionic surfactant/peppermint oil mixtures. J Dispers Sci Technol 30:399–405

    Article  CAS  Google Scholar 

  32. Leung R, Shah DO (1987) Solubilization and phase equilibria of water-in-oil microemulsions: I. Effects of spontaneous curvature and elasticity of interfacial films. J Colloid Interface Sci 120:320–329

    Article  Google Scholar 

  33. Leung R, Shah DO (1987) Solubilization and phase equilibria of water-in-oil microemulsions: II. Effects of alcohols, oils, and salinity on single-chain surfactant systems. J Colloid Interface Sci 120:330–344

    Article  Google Scholar 

  34. Hou MJ, Shah DO (1987) Effects of the molecular structure of the interface and continuous phase on solubilization of water in water/oil microemulsions. Langmuir 3:1086–1096

    Article  CAS  Google Scholar 

  35. Zada A, Lang J, Zana R (1990) Ternary water in oil microemulsions made of cationic surfactants, water, and aromatic solvents. 1. Water solubility studies. J Phys Chem 94:381–387

    Article  Google Scholar 

  36. Verrall RE, Milioto S, Zana R (1988) Ternary water-in-oil microemulsions consisting of cationic surfactants and aromatic solvents. J Phys Chem 92:3939–3943

    Article  CAS  Google Scholar 

  37. Derouiche A, Tondre C (1991) Correlation between maximum water/electrolyte solubilization and conductivity percolation in AOT reversed micelles. J Dispers Sci Technol 12:517–530

    Article  CAS  Google Scholar 

  38. Kuneida H, Horii M, Koyama M, Sakamoto K (2001) Solubilization of polar oils in surfactant self-organized structures. J Colloid Interface Sci 236:78–84

    Article  Google Scholar 

  39. Fanun M (2008) Water solubilization in mixed nonionic surfactants microemulsions. J Dispers Sci Technol 29:1043–1052

    Article  CAS  Google Scholar 

  40. Afifi H, Karlsson G, Heenan RK, Dreiss CA (2012) Structural transitions in cholesterol-based wormlike micelles induced by encapsulating alkyl ester oils with varying architecture. J Colloid Interface Sci 378:125–134

    Article  CAS  Google Scholar 

  41. Wang L, Dong J, Chen J, Eastoe J, Li X (2009) Design and optimization of a new self-nanoemulsifying drug delivery system. J Colloid Interface Sci 330:443–448

    Article  CAS  Google Scholar 

  42. Kaur G, Chiappisi L, Prevost S, Schweins R, Gradzielski M, Mehta SK (2012) Probing the microstructure of nonionic microemulsions with ethyl oleate by viscosity, ROESY, DLS, SANS, and Cyclic voltammetry. Langmuir 28:10640–10652

    Article  CAS  Google Scholar 

  43. Fanun M (2010) Properties of microemulsions with mixed nonionic surfactants and citrus oil. Colloids Surf A 369:246–252

    Article  CAS  Google Scholar 

  44. Szumala P, Szelag H (2012) Water solubilization using nonionic surfactants from renewable sources in microemulsion systems. J Surf Deterg 15:485–494

    Article  CAS  Google Scholar 

  45. Subramanian N, Ghosal SK, Acharya A, Moulik SP (2005) Formulation and physicochemical characterization of microemulsion system using isopropyl myristate, medium-chain glyceride, polysorbate 80 and water. Chem Pharm Bull 53:1530–1535

    Article  CAS  Google Scholar 

  46. Majhi PR, Moulik SP (1999) Microcalorimetric investigation of AOT Self-association in oil and the state of pool water in water/oil microemulsions. J Phys Chem B 103:5977–5983

    Article  CAS  Google Scholar 

  47. Majhi PR, Moulik SP (1999) Physicochemical Studies on biological macro- and microemulsions VI: mixing behaviors of eucalyptus oil, water and polyoxyethylene sorbitan monolaurate (Tween 20) Assisted by n-butanol or cinnamic alcohol. J Dispers Sci Technol 20:1407–1427

    Article  CAS  Google Scholar 

  48. Acharya A, Sanyal SK, Moulik SP (2001) Formation and characterization of a pharmaceutically useful microemulsion derived from isopropyl myristate, polyoxyethylene (4) lauryl ether (Brij-30), isopropyl alcohol and water. Curr Sci 81:362–370

    CAS  Google Scholar 

  49. Acharya A, Sanyal SK, Moulik SP (2001) Formation and characterization of a useful biological microemulsion system using mixed oil (Ricebran and isopropyl myristate), polyoxyethylene (2) oleyl ether (brij 92), isopropyl alcohol, and water. J Dispers Sci Technol 22:551–561

    Article  CAS  Google Scholar 

  50. Ekwall P (1975) In: Brown GH (ed) Advances in liquid crystals. Academic, New York, p 45

    Google Scholar 

  51. Acharya A, Moulik SP, Sanyal SK, Mishra BK, Puri PM (2002) Physicochemical investigations of microemulsification of coconut oil and water using polyoxyethylene 2-cetyl ether (Brij 52) and isopropanol or ethanol. J Colloid Interface Sci 245:163–170

    Article  CAS  Google Scholar 

  52. Moulik SP, Gupta S, Das AR (1989) Hydration studies on some polyhydroxy non-electrolytes and non-ionic surfactants. Can J Chem 67:356–364

    Article  CAS  Google Scholar 

  53. Khougaz K, Gao Z, Eisenberg A (1997) Distribution of water in solutions of reverse micelles of sodium bis[2-ethylhexyl] sulfosuccinate and block ionomers in toluene. Langmuir 13:623–631

    Article  CAS  Google Scholar 

  54. Liu D, Ma J, Cheng H, Zhao Z (1998) Investigation on the conductivity and microstructure of AOT/non-ionic surfactants/water/n-heptane mixed reverse micelles. Colloids Surf A 135:157–164

    Article  CAS  Google Scholar 

  55. Liu D, Ma J, Cheng H, Zhao Z (1999) Conducting properties of mixed reverse micelles. Colloids Surf A 148:291–298

    Article  CAS  Google Scholar 

  56. Joshi T, Mata J, Bahadur P (2005) Micellization and interaction of anionic and nonionic mixed surfactant systems in water. Colloids Surf A 260:209–215

    Article  CAS  Google Scholar 

  57. Azeem A, Khan ZI, Aqil M, Ahmad FJ, Khar RK, Talegaonkar S (2009) Microemulsions as a surrogate carrier for dermal drug delivery. Drug Dev Ind Pharm 35:525–547

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support in the form of an operating research grant to B.K.P. and Senior Research Fellowship to K.K. from the authority of Indian Statistical Institute, Kolkata, India is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bidyut K. Paul.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 164 kb)

About this article

Cite this article

Kundu, K., Paul, B.K. Physicochemical Investigation of Biocompatible Mixed Surfactant Reverse Micelles: III. Aqueous NaCl Solubilization, Thermodynamic Parameters of Desolubilization Process and Conductometric Studies. J Surfact Deterg 16, 865–879 (2013). https://doi.org/10.1007/s11743-013-1473-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-013-1473-1

Keywords

Navigation