Skip to main content
Log in

Determination of Sodium Dodecyl Sulfate in Toothpastes by a PVC Matrix Membrane Sensor

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The construction and characteristic performance of a new potentiometric PVC membrane sensor responsive for sodium dodecyl sulfate (SDS) are described. The sensor is based on the use of cetyltrimethylammonium-tetraphenylborate (CTA-TPB) ion-pair complex as electroactive material in PVC matrix in presence of dioctyl phthalate as a solvent mediator. The sensor exhibits a rapid, stable and near-Nernstian response for SDS over the concentration range of 5 × 10−3–5 × 10−6 mol dm−3 at 25 ± 2 °C and the pH range 4–8.5 with slope of 59.6 mV/decade change in SDS concentration. The lower detection limit is 5 × 10−6 mol dm−3 and the response time is 45 s. The determination of selectivity coefficients for different anions shows there is no interference except that of dodecyl benzene sulfonate (DBS) ion which has a strong interference. The results obtained in the determination of SDS in toothpastes, using this sensor as an indicator electrode, were compared with those obtained from the spectrophotometric method using methylene blue as the reagent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rosen MJ, Goldsmith HA (1972) Systematic analysis of surface active agents, 2nd edn. Wiley, New York, p 399

    Google Scholar 

  2. Koga M, Yamamichi Y, Nomoto Y, Irie M, Tanimura T, Yoshinaga T (1999) Rapid determination of anionic surfactants by improved spectrophotometric method using methylene blue. Anal Sci 15:563–568

    Article  CAS  Google Scholar 

  3. Reid VW, Longman GF, Heinerth E (1967) Determination of anionic-active detergents by two phase titration. Tenside 4:292–304

    CAS  Google Scholar 

  4. Johansson PA, Stefansson U, Hoffmann G (1983) Salts, amines and related compounds automatic potentiometric two-phase titration in pharmaceutical analysis: Part 2. Determ Amine Anal Chim Acta 151:49–63

    Article  CAS  Google Scholar 

  5. Thomas JDR (1986) Solvent polymeric membrane ion-selective electrodes. Anal Chim Acta 180:289–297

    Article  CAS  Google Scholar 

  6. Epton SR (1947) A rapid method of analysis for certain surface-active agents. Nature 160:795–796

    Article  CAS  Google Scholar 

  7. Yamamoto K, Oka M, Murakami H (2002) Spectrophotometric determination of trace ionic and non-ionic surfactants based on a collection on a membrane filter as the ion associate of the surfactant with Erythrosine B. Anal Chim Acta 455:83–92

    Article  CAS  Google Scholar 

  8. Rodenas-Torralba E, Ries BF, Morales-Rubio A, de la Guradia M (2005) Micropumping multicommutation turbidimetric analysis of waters. Talanta 66:591–599

    Article  CAS  Google Scholar 

  9. Nakae A, Tsuji K, Yamanaka M (1980) Determination of trace amounts of alkylbenzenesulfonates by high-performance liquid chromatography with fluorimetric detection. Anal Chem 52:2275–2277

    Article  CAS  Google Scholar 

  10. Swisher RD (1987) Surfactant biodegradation, surfactant sciences. F M Marcel Dekker, New York

    Google Scholar 

  11. Corcia AD, Marchetti M, Samperi R, Marcomini A (1991) Liquid chromatographic determination of linear alkylbenzenesulfonates in aqueous environmental samples. Anal Chim 63:1179–1182

    Article  Google Scholar 

  12. Yokoyama Y, Kondo M, Sato H (1993) Determination of alkylbenzenesulphonates in environmental water by anion-exchange chromatography. J Chromatogr A 643:169–172

    Article  CAS  Google Scholar 

  13. Scullion SD, Clench MR, Cooke M, Ashcroft AE (1996) Determination of surfactants in surface water by solid-phase extraction, liquid chromatography and liquid chromatography-mass spectrometry. J Chromatogr A 733:207–216

    Article  CAS  Google Scholar 

  14. Park HS, Rhee CK (2004) Simultaneous separation of nine surfactants of various types by HPLC with evaporative light scattering detection. J Chromatogr A 1046:289–291

    CAS  Google Scholar 

  15. Wangkarn S, Soisungnoen P, Rayanakorn M, Grudpan K (2005) Determination of linear alkylbenzene sulfonates in water samples by liquid chromatography–UV detection and confirmation by liquid chromatography—mass spectrometry. Talanta 67:686–695

    Article  CAS  Google Scholar 

  16. Levine LH, Garland JL, Johnson JV (2005) Simultaneous quantification of poly-dispersed anionic, amphoteric and nonionic surfactants in simulated wastewater samples using C18 high-performance liquid chromatography-quadrupole ion-trap mass spectrometry. J Chromatogr A 1062:217–225

    Article  CAS  Google Scholar 

  17. Lara-Martin PA, Gomez-Parra A, Gonzalez-Mazo E (2006) Simultaneous extraction and determination of anionic surfactants in waters and sediments. J Chromatogr A 1114:205–210

    Article  CAS  Google Scholar 

  18. Heinig K, Vogt C, Werner G (1996) Separation of anionic surfactants using aqueous and nonaqueous capillary electrophoresis. J Capill Electrophor 5:261–270

    Google Scholar 

  19. Szczopaniak W (1990) Mercurated polystyrene as a sensor for anionic surfactants ins ion-selective polymeric membrane electrodes. Analyst 6:341–347

    Google Scholar 

  20. Schmitt TM (1992) Analysis of surfactants. M. Dekker, New York

    Google Scholar 

  21. Chen S, Piertrzyk DJ (1993) Separation of sulfonate and sulfate surfactants by capillary electrophoresis: effect of buffer cation. Anal Chem 65:2770–2775

    Article  CAS  Google Scholar 

  22. Gallegos RD (1993) Titrations of non-ionic surfactants with sodium tetraphenylborate using the Orion surfactant electrode. Analyst 118:1137–1141

    Article  CAS  Google Scholar 

  23. Baillarger C, Mayaffre A, Turminc M, Letellier P, Suquet H (1994) Clay membrane electrodes specific to cationic surfactants—applications. Electrochim Acta 39:813–816

    Article  CAS  Google Scholar 

  24. Alegret S, Alonso J, Bartroli J, Baro-Roma J, Sanchez J, del Valle M (1994) Application of an all-solid-state ion-selective electrode for the automated titration of anionic surfactants. Analyst 119:2319–2322

    Article  CAS  Google Scholar 

  25. Kulapin AI, Mikkailova EA, Materova EA (1998) Selective solid contact electrodes for detecting ionogenic surface active substances. Russ J Electrochem 34:382–386

    CAS  Google Scholar 

  26. Hassanien MM, Abou-EI-Sherbini KhS, Mostafa GAE (2003) A novel tetrachlorothallate (111)—PVC membrane sensor for the potentiometric determination of Tl(III). Talanta 59:383–392

    Article  CAS  Google Scholar 

  27. Gorski L, Saniewska A, Parzuchowski P, Meyerhoff ME, Malinowska E (2005) Zirconium (IV)-salophens as fluoride selective ionophores in polymeric membrane electrodes. Anal Chim Acta 551:37–44

    Article  CAS  Google Scholar 

  28. Gerlache M, Senturk Z, Vire JC, Kauffman JM (1997) Potentiometric analysis of ionic surfactants by a new type of ion-selective electrode. Anal Chim Acta 349:59–65

    Article  CAS  Google Scholar 

  29. Arvand-Barmchi M, Mousavi MF, Zanjanchi MA, Shamsipur M (2003) A new dodecylsulfate-selective supported liquid membrane electrode based on its N-cetylpyridinium ion-pair. Michrochem J 74:149–156

    Article  CAS  Google Scholar 

  30. Segui MJ, Lizonodo-Sabater J, Martinez-Manez R, Pardo T, Sancenon F, Soto J (2004) Ion-selective electrodes for anionic surfactants using a new aza-oxa-cycloalkane as active ionophore. Anal Chim Acta 525:83–90

    Article  CAS  Google Scholar 

  31. Karami H, Mousavi MF (2004) Dodecyl benzene sulfonate anion-selective electrode based on polyaniline-coated electrode. Talanta 63:743–749

    Article  CAS  Google Scholar 

  32. Matesic-Puac R, Sak-Bosnar M, Bilic M, Garbaric BS (2005) Potentiometric determination of anionic surfactants using a new ion-pair-based all-solid-state surfactant sensitive electrode. Sens Actuators, B 106:221–228

    Article  Google Scholar 

  33. Kovacs B, Csoka B, Nagy G, Ivaska A (2001) All-solid-state surfactant sensing electrode using conductive polymer as internal electric contact. Anal Chim Acta 437:67–76

    Article  CAS  Google Scholar 

  34. Sak-Bosnar M, Grabric Z, Grabric BS (2004) Surfactant sensors in biotechnology Part 1-electrochemical sensors. Food Technol Biotechnol 42:197–205

    CAS  Google Scholar 

  35. Mostafa GE (2008) PVC matrix membrane sensor for potentiometric determination of dodecylsulfate. Intern J Environ Anal Chem 88:435–446

    Article  CAS  Google Scholar 

  36. Pungor E, Toth K (1969) Selectivity of ion-specific membrane electrodes. J Anal Chim Acta 47:291–297

    Article  CAS  Google Scholar 

  37. Agrawala V, Chattopadhyaya MC (1989) A heterogeneous precipitate based Mn(II) coated wire ion selective electrode. Anal Lett 22:1451–1457

    Article  Google Scholar 

  38. Jurado E, Fernandez-Serrano M, Nunez-Olea J, Luzon G, Lechuga M (2006) Simplified spectrophotometric method using methylene blue for determining anionic surfactants: applications to the study of primary biodegradation in aerobic screening tests. Chemosphere 65:278–285

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to UGC, New Delhi for providing the necessary funds required for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh C. Chattopadhyaya.

About this article

Cite this article

Devi, S., Chattopadhyaya, M.C. Determination of Sodium Dodecyl Sulfate in Toothpastes by a PVC Matrix Membrane Sensor. J Surfact Deterg 16, 391–396 (2013). https://doi.org/10.1007/s11743-012-1419-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-012-1419-z

Keywords

Navigation