Journal of Surfactants and Detergents

, Volume 16, Issue 1, pp 1–12 | Cite as

Protocol for Studying Aqueous Foams Stabilized by Surfactant Mixtures

Original Article

Abstract

Even though foams have been the subject of intensive investigations over the last decades, many important questions related to their properties remain open. This concerns in particular foams which are stabilized by mixtures of surfactants. The present study deals with the fundamental question: which are the important parameters one needs to consider if one wants to characterize foams properly? We give an answer to this question by providing a measuring protocol which we apply to well-known surfactant systems. The surfactants of choice are the two non-ionic surfactants n-dodecyl-β-d-maltoside (β-C12G2) and hexaethyleneglycol monododecyl ether (C12E6) as well as their 1:1 mixture. Following the suggested protocol, we generated data which allow discussion of the influence of the surfactant structure and of the composition on the time evolution of the foam volume, the liquid fraction, the bubble size and the bubble size distribution. This paper shows that different foam properties can be assigned to different surfactant structures, which is the crucial point if one wants to tailor-make surfactants for specific applications.

Keywords

Foams Foamability Foam stability FoamScan Bubble size Bubble size distribution Non-ionic surfactants Surfactant mixtures 

Supplementary material

11743_2012_1416_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1.46 mb)

References

  1. 1.
    Bamforth CW (2000) Brewing and brewing research: past, present and future. J Sci Food Agric 80:1371–1378CrossRefGoogle Scholar
  2. 2.
    Mainkar AR, Jolly CI (2000) Evolution of commercial herbal shampoos. Int J Cosmet Sci 22:385–391CrossRefGoogle Scholar
  3. 3.
    Matis KA, Mavros P (1991) Foam/froth flotation. Sep Purif Rev 20:163–198CrossRefGoogle Scholar
  4. 4.
    Rudin AD (1957) Measurement of the foam stability of beers. J Inst Brew 63:506–509Google Scholar
  5. 5.
    Somasundaran P (2006) Encyclopedia of surface and colloid science, vol 4, 2nd edn. Taylor and Francis, LondonGoogle Scholar
  6. 6.
    Bikerman JJ (1973) Foams. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    Hutzler S, Lösch D, Carey E, Weaire D, Hloucha M, Stubenrauch C (2011) Evolution of a steady-state test of foam stability. Philos Mag 91:537–552CrossRefGoogle Scholar
  8. 8.
    Weaire D, Hutzler S (1999) The physics of foams. Clarendon Press, OxfordGoogle Scholar
  9. 9.
    Stubenrauch C, Shrestha LK, Varade D, Johansson I, Olanya G, Aramaki K, Claesson P (2009) Aqueous foams stabilized by n-dodecyl-β-d-maltoside, hexaethyleneglycol mono dodecyl ether, and their 1:1 mixture. Soft Matter 5:3070–3080CrossRefGoogle Scholar
  10. 10.
    Stubenrauch C, Claesson PM, Rutland M, Manev E, Johansson I, Pedersen JS, Langevin D, Blunk D, Bain CD (2010) Mixtures of n-dodecyl-β-d-maltoside and hexaoxyethylene dodecyl ether: surface properties, bulk properties, foam films, and foams. Adv Colloid Interface Sci 155:5–18CrossRefGoogle Scholar
  11. 11.
    Boos J, Drenckhan W, Stubenrauch C (2012) On how surfactant depletion during foam generation influences foam properties. Langmuir 28:9303–9310CrossRefGoogle Scholar
  12. 12.
    Schlarmann J, Stubenrauch C (2003) Stabilization of foam films with non-ionic surfactants: alkyl polyglycol ethers compared with alkyl polyglucosides. Tens Surf Deterg 40:190–195Google Scholar
  13. 13.
    Schlarmann J, Stubenrauch C, Strey R (2003) Correlation between film properties and the purity of surfactants. Phys Chem Chem Phys 5:184–191CrossRefGoogle Scholar
  14. 14.
    Carey E, Stubenrauch C (2009) Properties of aqueous foams stabilized by dodecyltrimethylammonium bromide. J Colloid Interface Sci 333:619–627CrossRefGoogle Scholar
  15. 15.
    Carey E, Stubenrauch C (2010) A disjoining pressure study of foam films stabilized by mixtures of nonionic (C12DMPO) and an ionic surfactant (C12TAB). J Colloid Interface Sci 343:314–323CrossRefGoogle Scholar
  16. 16.
    Feitosa K, Marze S, Saint-Jalmes A, Durian DJ (2005) Electrical conductivity of dispersions: from dry foams to dilute suspensions. J Phys: Condens Matter 17:6301–6305CrossRefGoogle Scholar
  17. 17.
    Wang Y, Neethling SJ (2009) The relationship between the surface and internal structure of dry foam. Colloids Surf A 339:73–81CrossRefGoogle Scholar
  18. 18.
    Durian DJ (1997) Bubble-scale model of foam mechanics: melting, nonlinear behavior, and avalanches. Phys Rev E 55:1739–1751CrossRefGoogle Scholar
  19. 19.
    Saint-Jalmes A (2006) Physical chemistry in foam drainage and coarsening. Soft Matter 2:836–849CrossRefGoogle Scholar
  20. 20.
    Bisbrink CGJ, Ronteltap AD, Prins A (1992) Bubble size distribution in foams. Adv Colloid Interface Sci 38:13–32CrossRefGoogle Scholar
  21. 21.
    Biswal SK, Reddy PRS, Bhaumik SK (1994) Bubble size distribution in flotation column. Can J Chem Eng 72:148–151CrossRefGoogle Scholar
  22. 22.
    Durian CJ, Weitz D, Pine DJ (1991) Multiple light-scattering probes of foam structure and dynamics. Science 252:686–688CrossRefGoogle Scholar
  23. 23.
    Lachaise J, Sahnoun S, Dicharry B, Salager JL (1991) Improved determination of the initial structure of liquid foams. Prog Colloid Polymer Sci 84:253–256CrossRefGoogle Scholar
  24. 24.
    Kroezen ABJ, Groot Wassink J (1987) Bubble size distribution and energy dissipation in foam mixtures. JSDC 103:386–394Google Scholar
  25. 25.
    Calvert JR, Nezhati K (1987) Bubble size effect in foams. Int J Heat Fluid Flow 8:102–106CrossRefGoogle Scholar
  26. 26.
    Gido SP, Hirt DE, Montgomery SM, Prud’home RK, Renbenfeld L (1989) Foam bubble size measured using image analysis before and after passage through a porous medium. J Dispers Sci Technol 10:785–793CrossRefGoogle Scholar
  27. 27.
    Cervantes-Martinez A, Saint-Jalmes A, Maldonado A, Langevin D (2005) Effect of cosurfactant on free-drainage regime of aqueous foams. J Colloid Interface Sci 292:544–547CrossRefGoogle Scholar
  28. 28.
    Koehler SA, Hilgenfeld S, Stone HA (2000) A generalized view of foam drainage: experiment and theory. Langmuir 16:6237–6341Google Scholar
  29. 29.
    Koehler SA, Hilgenfeldt S, Stone HA (1999) Liquid flow through aqueous foams: the node-dominated foam drainage equation. Phys Rev Lett 82:4232–4235CrossRefGoogle Scholar
  30. 30.
    Saint-Jalmes A, Langevin D (2002) Time evolution of aqueous foams: drainage and coarsening. J Phys: Condens Matter 14:9397–9412CrossRefGoogle Scholar
  31. 31.
    Saint-Jalmes A, Vera MU, Durian DJ (1999) Uniform foam production by turbulent mixing: new results on free drainage vs. liquid content. Eur Phys J B 12:67–73CrossRefGoogle Scholar
  32. 32.
    Patil SR, Buchavzov N, Carey E, Stubenrauch C (2008) Binary mixtures of β-dodecylmaltoside (β-C12G2) with cationic and non-ionic surfactants: micelle and surface compositions. Soft Matter 4:840–848CrossRefGoogle Scholar

Copyright information

© AOCS 2012

Authors and Affiliations

  • Julia Boos
    • 1
  • Wiebke Drenckhan
    • 2
  • Cosima Stubenrauch
    • 1
  1. 1.Universität StuttgartInstitut für Physikalische ChemieStuttgartGermany
  2. 2.Laboratoire de Physique des SolidesUMR 8502, Université Paris-SudOrsay CedexFrance

Personalised recommendations