Skip to main content
Log in

Synthesis, Surface and Thermodynamic Properties of Substituted Polytriethanolamine Nonionic Surfactants

Journal of Surfactants and Detergents

Abstract

Three series of nonionic surfactants derived from polytriethanolamine containing 8, 10, and 12 units of triethanolamine were synthesized. Structural assignment of the different compounds was made on the basis of FTIR and 1H-NMR spectroscopic data. The surface parameters of these surfactants included critical micelle concentration (CMC), surface tension at the CMC (γCMC), surfactant concentration required to reduce the surface tension of the solvent by 20 mN m−1 (pC 20), maximum surface excess (Γmax), and the interfacial area occupied by the surfactant molecules (A min) using surface tension measurements. The micellization and adsorption free energies were calculated at 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3

References

  1. Wong SP, Lim WH, Cheng SF, Chuah CH (2012) Properties of sodium methyl ester alpha-sulfoalkylate/trimethylammonium bromide mixtures. J Surf Deterg 15:593–599

    Article  Google Scholar 

  2. Pegiadou S, Perez L, Infante MR (2000) Synthesis, characterization and surface properties of 1-N-L-tryptophan-glycerol ether surfactants. J Surf Deterg 3:517–522

    Article  CAS  Google Scholar 

  3. Yakimchuk OD, Kotomin AA, Petelskii MB, Naumov VN (2004) Cleaning action and surfactant properties of alkyl glycosides. Russian J Appl Chem 77:2001–2005

    Article  CAS  Google Scholar 

  4. Chao YC, Su SK, Lin YW, Hsu WT, Huang KS (2012) Interfacial properties of polyethylene glycol/vinyltriethoxysilane (peg/vtes) copolymers and their application to stain resistance. J Surf Deterg 15:299–305

    Article  CAS  Google Scholar 

  5. Fekarcha L, Tazerouti A (2012) Surface activities, foam properties, hlb, and kraft point of some N-alkanesulfonates (C14–C18) with different isomeric distributions. J Surf Deterg 15:419–431

    Article  CAS  Google Scholar 

  6. Hill K, von Rybinski W, Stoll G (1997) Alkyl polyglucosides—technology, properties and applications. VCH, Weinheim

    Google Scholar 

  7. Laska U, Wilk A, Maliszewska I, Syper L (2006) Novel glucose-derived gemini surfactants with a 1,1-ethylenebisurea spacer: preparation, thermotropic behavior, and biological properties. J Surf Deterg 9:115–124

    Article  CAS  Google Scholar 

  8. Auge J, Germain NL (2000) Glycosylhydrazides, a new class of sugar surfactant. preparation and amphiphilic properties of 1-glycosyl-2-acylhydrazines. J Carbohydr Chem 19:379–392

    Article  CAS  Google Scholar 

  9. Sheng Y, Xu X, Jiang W, Song Y, Gan S (2012) Application of oxidized cornstarch as a nonphosphoric detergent builder. J Surf Deterg 15:393–398

    Article  CAS  Google Scholar 

  10. Stjerndahl M, Holmberg K, van Ginkel CG (2003) Hydrolysis and biodegradation studies of surface active esters. J Surf Deterg 6:319–324

    Article  CAS  Google Scholar 

  11. Negm NA, Mohamed AS (2008) Synthesis, characterization and biological activity of sugar-based gemini cationic amphiphiles. J Surf Deterg 11:215–221

    Article  CAS  Google Scholar 

  12. Negm NA, Kandile NG, Mohamad MA (2011) Synthesis, characterization and surface activity of new eco-friendly schiff bases vanillin derived cationic surfactants. J Surf Deterg 14:325–331

    Article  CAS  Google Scholar 

  13. Negm NA, Mahmoud SA (2003) Effect of structure on the physicochemical properties of nonionic phosphate amphiphiles. Egypt J Petrol 12:11–20

    Google Scholar 

  14. Negm NA, El Farargy AF, Imam D, Mohamad HN (2012) Environmentally friend nonionic surfactants derived from tannic acid: synthesis, characterization and influence of structure on the surface activity. J Surf Deterg 15:433–443

    Article  CAS  Google Scholar 

  15. Negm NA, Mohamed AA, El Awady MY (2004) Influence of structure on the cationic polytriethanol ammonium bromide derivatives. i. synthesis, surface and thermodynamic properties. Egypt J Chem 47:369–381

    CAS  Google Scholar 

  16. Hafiz AA, Abdou MI (2003) Synthesis and evaluation of polytriethanolamine monooleates for oil-based muds. J Surf Deterg 6:243–251

    Article  CAS  Google Scholar 

  17. Negm NA, El-Farargy AF, Al Sabagh AM, Abdelrahman NR (2011) New schiff base cationic surfactants: surface and thermodynamic properties and applicability in bacterial growth and metal corrosion prevention. J Surf Deterg 14:505–514

    Article  CAS  Google Scholar 

  18. Al Sabagha AM, Elsabeeb M, Khaleda K, Eltabiea AE (2010) Synthesis of some surfactants based on polytriethanolamine and investigation of their surface active properties. J Dispersion Sci Technol 31:1335–1343

    Article  Google Scholar 

  19. Kim TS, Kida T, Nakatsuji Y, Hirao T, Ikeda I (1996) Surface active properties of novel cationic surfactants with two alkyl chains and two ammonio groups. J Am Oil Chem Soc 73:907–913

    Article  CAS  Google Scholar 

  20. Yan RX (1998) Water-soluble polymers. Chemical Industry Press, Beijing, pp 192–193

    Google Scholar 

  21. Negm NA (2007) Solubilization, surface active and thermodynamic parameters of Gemini amphiphiles bearing nonionic hydrophilic spacers. J Surf Deterg 10:71–80

    Article  CAS  Google Scholar 

  22. Hall DG, Tiddy GJT (1981) Surfactant solutions: dilute and concentration. In: Lucassen-Reynders EH (ed) Anionic surfactants: Physical chemistry of surfactant action. Surfactant Science Series, vol 11. Marcel Dekker, New York, p 60

    Google Scholar 

  23. Infante MR, Perez L, Pinazo A (1998) Novel cationic surfactants from arginine. In: Holmberg K (ed) Novel surfactants. Surfactant Science Series, vol 74. Marcel Dekker, New York, p 97

    Google Scholar 

  24. Anacker EW (1969) Micelle formation of cationic surfactants in aqueous media. In: Jungermann E (ed) Cationic surfactants. Surfactant Science Series, vol 4. Marcel Dekker, New York, p 217

    Google Scholar 

  25. Attwood D, Florence AT (1983) Surfactant systems: their chemistry, pharmacy, and biology. Chapman & Hall, New York, p 88

    Book  Google Scholar 

  26. Rosen MJ (1978) Surfactants and interfacial phenomena. Wiley, New York, pp 94–95

    Google Scholar 

  27. Abel E, Fedders MF, Gokel GW (1995) Vesicle formation from n-alkylindoles: implications for tryptophan–water interactions. J Am Chem Soc 117:1265–1272

    Article  CAS  Google Scholar 

  28. Abel E, De-Wall SL, Edwards WB, Lalitha S, Covey DF, Gokel GW (2000) Formation of stable vesicles from n- or 3-alkylindoles: possible evidence for tryptophan as a membrane anchor in proteins. J Org Chem 65:5901–5909

    Article  CAS  Google Scholar 

  29. Hu W, Lee KC, Cross TA (1993) Tryptophans in membrane proteins: indole ring orientations and functional implications in the gramicidin channel. Biochem 32:7035–7042

    Article  CAS  Google Scholar 

  30. Rosen MJ (1989) Surfactants and interfacial phenomena. Wiley, USA

    Google Scholar 

  31. Griffin WC (1949) Classification of surface-active agents by HLB. J Soc Cosmet Chem 1:311–319

    Google Scholar 

  32. Griffin WC (1954) Calculation of HLB values of non-ionic surfactants. J Soc Cosmet Chem 5:259–264

    Google Scholar 

  33. Davies JT (1957) A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent. In: Proceedings of the international congress of surface activity, pp 426–438

  34. Negm NA (2002) Surface activities and electrical properties of long chain diquaternary bola-form amphiphiles. Egypt J Chem 45:483–499

    CAS  Google Scholar 

  35. Negm NA, Salem MAI, Badawi AM, Zaki MF (2004) Solubilization using some novel N-methyl, diethanol ammonium, bromide cationic surfactant. In: Proceedings of the 7th international conference on chemical engineering, 2, Society of Chemical Engineering, Cairo, Egypt

  36. Negm NA, Mohamed AS (2004) Surface and thermodynamic properties of diquaternary bola-form amphiphiles containing aromatic spacer. J Surf Deterg 7:23–30

    Article  CAS  Google Scholar 

  37. Varka EM, Argyropoulou EC, Infante MR, Pegiadou S (2004) Synthesis, characterization, and surface properties of phenylalanine-glycerol ether surfactants. J Surf Deterg 7:409–414

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabel A. Negm.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 93 kb)

About this article

Cite this article

Negm, N.A., El-Farargy, A.F., Tawfik, S.M. et al. Synthesis, Surface and Thermodynamic Properties of Substituted Polytriethanolamine Nonionic Surfactants. J Surfact Deterg 16, 333–342 (2013). https://doi.org/10.1007/s11743-012-1412-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-012-1412-6

Keywords

Navigation