Skip to main content
Log in

Experimental Study of CMC Evaluation in Single and Mixed Surfactant Systems, Using the UV–Vis Spectroscopic Method

Journal of Surfactants and Detergents

Abstract

In this study, the critical micellar concentration (CMC) of anionic, cationic and nonionic surfactants was determined using the UV–Vis spectroscopic method. Sodium lauryl sulfate (SDS) as anionic, hexadecyl-trimethyl-ammonium bromide as cationic, tert-octylphenol ethoxylates TOPEON (with N = 9.5, 7.5 and 35) and lauryl alcohol ethoxylate (23EO) as nonionic surfactants have been used. Concentration of surfactants varies both from below and above the CMC value in the pyrene solution. In addition, the amount of the CMC was determined using the values from the data obtained from the graph of absorbance versus concentration of surfactants. A comparative study was conducted between the results of the present study and the literature which shows a good agreement, in particular for TOPEO9.5 and LAEO23. Furthermore, the CMC value of SDS (as an ionic surfactant) in the presence of nonionic surfactants was also examined. The result reveals that with addition of small amount of nonionic surfactant to the anionic SDS surfactant, a decline in the CMC value of the anionic–nonionic system relative to the CMC of pure anionic surfactant was observed. In addition and for the first time, the effect of UV irradiation on the size of the micelle formations was studied. It was found that UV irradiation causes the formation of smaller micelles which is of prime concern in membrane technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Wong JE, Duchscherer TM, Pietraru G, Cramb DT (1999) Novel fluorescence spectral deconvolution method for determination of critical micelle concentrations using the fluorescence probe PRODAN. Langmuir 15:6181–6186

    Article  CAS  Google Scholar 

  2. Santhakumar K, Kumaraguru N, Arumugham MN, Arunachalam S (2006) Metallomicelles of Co(III) coordination complexes—synthesis, characterization and determination of CMC values. Polyhedron 25:1507–1513

    Article  CAS  Google Scholar 

  3. Senthil Kumar R, Arunachalam S, Periasamy VS, Preethy CP, Riyasdeen A, Akbarsha MA (2009) Surfactant–cobalt(III) complexes: synthesis, critical micelle concentration (CMC) determination, DNA binding, antimicrobial and cytotoxicity studies. J Inorg Biochem 103:117–127

    Article  Google Scholar 

  4. Jacquter JC, Desbene PL (1995) Determination of critical micelle concentration by capillary electrophoresis theoretical approach and validation. J Chromatogr A 718:167–175

    Article  Google Scholar 

  5. Herrero-Martínez JM, Simó-Alfonso EF, Mongay-Fernández C, Ramis-Ramos G (2000) Determination of cationic surfactants by capillary zone electrophoresis and micellar electrokinetic chromatography with deoxycholate micelles in the presence of large organic solvent concentrations. J Chromatogr A 895:227–235

    Article  Google Scholar 

  6. Mandal AB, Unni Nair B, Ramaswamy D (1988) Determination of the critical micelle concentration of surfactants and the partition coefficient of an electrochemical probe by using cyclic voltammetry. Langmuir 4:736–739

    Article  CAS  Google Scholar 

  7. Sarkar B, Lam S, Alexandridis P (2010) Micellization of alkyl-propoxy-ethoxylate surfactants in water-polar organic solvent mixtures. Langmuir 26:10532–10540

    Article  CAS  Google Scholar 

  8. Thevenot C, Grassl B, Bastiat G, Binana W (2005) Aggregation number and critical micellar concentration of surfactant determined by time-dependent static light scattering (TDSLS) and conductivity. Colloids Surf A 252:105–111

    Article  CAS  Google Scholar 

  9. Perry CC, Sabir TS, Livingston WJ, Milligan JR, Chen Q, Maskiewicz V, Boskovic DS (2011) Fluorescence of commercial Pluronic F127 samples: temperature dependent micellization. J Colloid Interface Sci 354:662–669

    Article  CAS  Google Scholar 

  10. Müh F, Zouni A (2008) Micelle formation in the presence of photosystem I. Biochimica Biophys Acta 1778:2298–2307

    Article  Google Scholar 

  11. Mohr A, Talbiersky P, Korth HG, Sustmann R, Boese R, Blaser D, Rehage H (2007) A new pyrene-based fluorescent probe for the determination of critical micelle concentrations. J Phys Chem B 111:12985–12992

    Article  CAS  Google Scholar 

  12. Antoine M, Devanathan S, Patonay G (1991) Determination of critical micelle concentration of surfactants using a near-infrared hydrophobicity probe. Microchem J 43:165–172

    Article  CAS  Google Scholar 

  13. Wong KY, Lee WWS (1997) Platinum 2, 2′ :6′,2′-terpyridine complexes as probes for CMC determination of sodium dodecyl sulfate solutions. J Photochem Photobiol A Chem 102:231–235

    Article  CAS  Google Scholar 

  14. Sharma N, Jain SK, Rastogi RC (2008) Solubilization of 5-methoxy tryptamine molecular probes in CTAB and SDS micelles: a cmc and binding constant study. Spectrochimica Acta Part A 69:748–756

    Article  Google Scholar 

  15. Ray GB, Chakraborty I, Moulik SP (2006) Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity. J Colloid Interface Sci 294:248–254

    Article  Google Scholar 

  16. Chakraborty T, Chakraborty I, Ghosh S (2011) The methods of determination of critical micellar concentrations of the amphiphilic systems in aqueous medium. Arab J Chem 4:265–270

    Article  CAS  Google Scholar 

  17. Kalyanasundaram K, Thomas JK (1977) Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 99:2039–2044

    Article  CAS  Google Scholar 

  18. Behera K, Dahiya P, Pandey S (2007) Effect of added ionic liquid on aqueous Triton X-100 micelles. J Colloid Interface Sci 307:235–245

    Article  CAS  Google Scholar 

  19. Sehgal P, Kosaka O, Doe H, Otzen DE (2009) Interaction and stability of mixed micelle and monolayer of nonionic and cationic surfactant mixtures. J Dispers Sci Technol 30:1050–1058

    Article  CAS  Google Scholar 

  20. Mohamed A, Mahfoodh ASM (2006) Solubilization of naphthalene and pyrene by sodium dodecyl sulfate (SDS) and polyoxyethylenesorbitan monooleate (Tween 80) mixed micelles. Colloids Surf A 287:44–50

    Article  CAS  Google Scholar 

  21. Zhou W, Zhu L (2004) Solubilization of pyrene by anionic-nonionic mixed surfactants. J Hazard Mater 109:213–220

    Article  CAS  Google Scholar 

  22. Inoue T, Misono T, Lee S (2007) Comment on “Determination of the critical micelle concentration of dodecylguanidine monoacetate (dodine)”. J Colloid Interface Sci 314:334–336

    Article  CAS  Google Scholar 

  23. Mrestani Y, Claussen S, Neubert RHH (2002) Determination of CMC of sodium glucocorticides hemisuccinates by CE. J Pharm Biomed Anal 30:869–873

    Article  CAS  Google Scholar 

  24. Posa M, Kevresan S, Mikov M, Cirin-Novta V, Sârbu C, Kuhajda K (2007) Determination of critical micellar concentrations of cholic acid and its keto derivatives. Colloids Surf B 59:179–183

    Article  CAS  Google Scholar 

  25. Jumpertz T, Tschapek B, Infed N, Smits SHJ, Ernst R, Schmitt L (2011) High-throughput evaluation of the critical micelle concentration of detergents. Anal Biochem 408:64–70

    Article  CAS  Google Scholar 

  26. Hait SK, Moulik SP (2001) Determination of critical micelle concentration (CMC) of nonionic surfactants by donor–acceptor interaction with iodine and correlation of CMC with hydrophile–lipophile balance and other parameters of the surfactants. J Surf Deterg 4:303–309

    Article  CAS  Google Scholar 

  27. Isobe H, Singh CD, Katsumata H, Suzuki H, Fujinami T, Ogita M (2005) Measurements of critical micelle concentration (CMC) using optical fiber covered with porous sol-gel cladding. Appl Surf Sci 244:199–202

    Article  CAS  Google Scholar 

  28. Mehta SK, Bhawna T (2010) Significant effect of polar head group of surfactants on the solubilization of Zein in mixed micellar (SDS–DDAB) media. Colloids Surf B 81:74–80

    Google Scholar 

  29. Ysambertt F, Vejar F, Paredes J, Salager JL (1998) The absorbance deviation method: spectrophotometric estimation of the critical micelle concentration (CMC) of ethoxylated alkylphenol surfactants. Colloids Surf A 137:189–196

    Article  CAS  Google Scholar 

  30. Perkowski J, Mayer J, Kos L (2005) Success reactions of non-ionic surfactants, Triton X-n type, with OH radicals A review. Fibres Text East Eur 13:81–85

    CAS  Google Scholar 

  31. Duff DG, Giles CH (1972) Spectrophotometric determination of the critical micelle concentration of surfactants. J Colloid Interface Sci 41:407–414

    Article  CAS  Google Scholar 

  32. Khan AM, Shah SS (2008) A UV-visible study of partitioning of pyrene in an anionic surfactant sodium dodecyl sulfate. Dispersion Sci Technol 29:1401–1407

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Saghatoleslami.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 826 kb)

About this article

Cite this article

Tanhaei, B., Saghatoleslami, N., Chenar, M.P. et al. Experimental Study of CMC Evaluation in Single and Mixed Surfactant Systems, Using the UV–Vis Spectroscopic Method. J Surfact Deterg 16, 357–362 (2013). https://doi.org/10.1007/s11743-012-1403-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-012-1403-7

Keywords

Navigation