Skip to main content
Log in

Ethoxy Carboxylate Extended Surfactant: Surface Charge of Surfactant-Modified Alumina, Adsolubilization and Solubilization of Phenylethanol and Styrene

Journal of Surfactants and Detergents

Abstract

Adsolubilization of contaminants by surfactant-modified material is an important phenomenon for surfactant-based environmental technologies. Recently, extended surfactants have been shown to enhance the adsolubilization capacity of organic solutes. In this study, two extended surfactants (ethoxy propoxylated carboxylate extended surfactant—C16PO4EO5C and propoxylate extended sulfate surfactant—C16PO4S) were selected for modifying positively charged alumina surfaces with the aim of enhancing adsolubilization of organic solutes with varying degrees of polarity (phenanthrene, styrene, and phenylethanol). The nature of the charged surface as a function of extended surfactant adsorption was evaluated through the zeta potential measurements. The results showed that at maximum bilayer coverage, the zeta potential of the alumina surface remained constant and was oppositely charged (negative) to the unmodified alumina (positive). Zeta potential measurements showed that the adsorbed bilayer of carboxylate-based extended surfactant produced more negatively charged surface. Surfactant desorption results showed that the surfactant-modified surface retained their negatively charge, albeit reduced, indicating that partial desorption occurred but not to the point that the positively charged alumina surface was realized. The adsolubilization results suggest a benefit of the ethoxy groups in adsolubilizing the polar phenylethanol in the palisade layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Fernández A, Scorzza C, Usubillaga A, Salager J (2005) Synthesis of new extended surfactant containing a carboxylate or sulfate polar group. J Surfact Deterg 8:187–191

    Article  Google Scholar 

  2. Forgiarini AM, Scorzza C, Velásquez J, Vejar F, Zambrano E, Salager J (2010) Influence of the mixed propoxy/ethoxy spacer arrangement order and of the ionic head group nature on the adsorption and aggregation of extended surfactants. J Surfact Deterg 13:451–458

    Article  CAS  Google Scholar 

  3. Arpornpong N, Charoensaeng A, Sabatini DA, Khaodhiar S (2010) Ethoxy carboxylate extended surfactant: micellar, adsorption and adsolubilization properties. J Surfact Deterg 13:305–311

    Article  CAS  Google Scholar 

  4. Charoensaeng A, Sabatini DA, Khaodhiar S (2008) Styrene solubilization and adsolubilization on an aluminum oxide surface using linker molecules and extended surfactants. J Surfact Deterg 11:61–71

    Article  CAS  Google Scholar 

  5. Panswad D, Sabatini DA, Khaodhiar S (2011) Precipitation and micellar properties of novel mixed anionic extended surfactants and a cationic surfactant. J Surfact Deterg 14:577–583

    Article  CAS  Google Scholar 

  6. Sarkar B, Lam S, Alexandridis P (2010) Micellization of alkyl-propoxy-ethoxylate surfactants in water-polar organic solvent mixtures. Langmuir 26:10532–10540

    Article  CAS  Google Scholar 

  7. Witthayapanyanon A, Acosta EJ, Harwell JH, Sabatini DA (2006) Formulation of ultralow interfacial tension systems using extended surfactants. J Surfact Deterg 9:331–339

    Article  CAS  Google Scholar 

  8. Minána-Perez M, Graciaa A, Lachaise J, Salager J (1995) Solubilization of polar oils with extended surfactants. Colloid Surf A 100:217–224

    Article  Google Scholar 

  9. Minána-Perez M, Graciaa A, Lachaise J, Salager J (1995) Solubilization of polar oils in microemulsion systems. Prog Colloid Polym Sci 98:177–179

    Article  Google Scholar 

  10. Charoensaeng A, Sabatini DA, Khaodhiar S (2009) Solubilization and adsolubilization of polar and nonpolar organic solutes by linker molecules and extended surfactants. J Surfact Deterg 12:209–217

    Article  CAS  Google Scholar 

  11. West CC, Harwell JH (1992) Surfactants and subsurface remediation. Environ Sci Technol 26:2324–2330

    Article  CAS  Google Scholar 

  12. Nayyar SP, Sabatini DA, Harwell JH (1994) Surfactant adsolubilization and modified admicellar sorption of nonpolar, polar, and ionizable organic contaminants. Environ Sci Technol 28:1874–1881

    Article  CAS  Google Scholar 

  13. Kitiyanan B, O’Haver JH, Harwell JH, Osuwan S (1996) Adsolubilization of styrene and isoprene in cetyltrimethylammonium bromide admicelle on precipitated silica. Langmuir 12:2162–2168

    Article  CAS  Google Scholar 

  14. Fuangswasdi A, Charoensaeng A, Sabatini DA, Scamehorn JF, Acosta JE, Osathaphan K, Khaodhiar S (2006) Mixtures of anionic and cationic surfactants with single and twin head groups: adsorption and precipitation studies. J Surfact Deterg 9:21

    Article  CAS  Google Scholar 

  15. Fuangsawasdi A, Charoensaeng A, Sabatini DA, Scamehorn JF, Acosta JE, Osathaphan K, Khaodhiar S (2006) Mixtures of anionic and cationic surfactants with single and twin head groups: solubilization and adsolubilization of styrene and ethylcyclohexane. J Surfact Deterg 9:29–37

    Article  Google Scholar 

  16. Attaphong C, Asnachinda E, Charoensaeng A, Sabatini DA, Khaodhiar S (2010) Adsorption and adsolubilization of polymerizable surfactants on aluminum oxide. Adv Colloid Interface Sci 344:126–131

    Article  CAS  Google Scholar 

  17. Asnachinda E, Khaodhiar S, Sabatini DA (2009) Effect of ionic head group on admicelle formation by polymerizable surfactants. J Surfact Deterg 12:379–386

    Article  CAS  Google Scholar 

  18. Gallardo-Moreno AM, Gonźalez-García CM, Gonźalez-Martín ML, Bruque JM (2004) Arrangement of SDS adsorbed layer on carbonaceous particles by zeta potential determinations. Colloids Surf A 249:57–62

    Article  CAS  Google Scholar 

  19. Sis H, Birinci M (2009) Effect of nonionic and ionic surfactants on zeta potential and dispersion properties of carbon black powders. Colloids Surf A 341:60–67

    Article  CAS  Google Scholar 

  20. Rosen MJ (1989) Surfactants and interfacial phenomena. Wiley, New York

    Google Scholar 

  21. O’Haver JH, Lobban LL, Harwell JH, O’Rear EA (1995) Adsolubilization (chap 8). In: Christian SD, Scamehorn JF (eds) Solubilization in surfactant aggregates. Marcel Dekker, New York, pp 277–295

    Google Scholar 

  22. Paria S, Khilar KC (2004) A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface. Adv Colloid Interface Sci 110:75–95

    Article  CAS  Google Scholar 

  23. Adak A, Bandyopadhyay M, Pal A (2005) Adsorption of anionic surfactant on alumina and reuse of the surfactant-modified alumina for the removal of crystal violet from aquatic environment. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 40:167–182

    Article  Google Scholar 

  24. Zhang R, Somasundaran P (2006) Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv Colloid Interface Sci 123:213–229

    Article  Google Scholar 

  25. Tadros TF (2005) Applied surfactants, 1st edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  26. Musselmann SW, Chander S (2002) Wetting and adsorption of acetylenic and diol based nonionic surfactants on heterogeneous surfaces. Colloids Surf A 206:497–513

    Article  Google Scholar 

  27. Pongprayoon T, Yanumet N, O’Rear EA (2002) Admicellar polymerization of styrene on cotton. J Colloid Interface Sci 249:227–234

    Article  CAS  Google Scholar 

  28. Cratin P (1969) A quantitative characterization of pH-dependent systems. Interface Symp 61:35–45

    Google Scholar 

  29. Rivas H, Gutiérrez X, Ziritt J, Antón R, Salager J (1997) Microemulsion and optimal formulation occurrence in pH-dependent systems as found in alkaline-enhanced oil recovery (chap 15). In: Solans C, Kunieda H (eds) Industrial applications of microemulsions. Marcel Dekker, New York, pp 305–329

    Google Scholar 

  30. Dickson J, O’Haver J (2002) Adsolubilization of naphthalene and naphthol in CTAB admicelles. Langmuir 18:9171–9176

    Article  CAS  Google Scholar 

  31. Saphanuchart W, Saiwan C, O’Haver JH (2008) Temperature effects on adsolubilization of aromatic solutes partitioning to different regions in cationic admicelles. Colloid Surf A 317:303–308

    Article  CAS  Google Scholar 

  32. Rouse JD, Sabatini DA, Deeds NE, Brown RE, Harwell JH (1995) Micellar solubilization of saturated hydrocarbon concentrations as evaluated by semi-equilibrium dialysis. Environ Sci Technol 29:2484–2489

    Article  CAS  Google Scholar 

  33. Esumi K (2001) Interactions between surfactants and particles: dispersion, surface modification, and adsolubilization. J Colloid Interface Sci 241:1–17

    Article  CAS  Google Scholar 

  34. Edward DA, Luthy RG, Liu Z (1991) Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ Sci Technol 25:127–133

    Article  Google Scholar 

  35. Rouse JD, Sabatini DA, Harwell JH (1993) Minimizing surfactant losses using twin-head anionic surfactants in subsurface remediation. Environ Sci Technol 27:2072–2078

    Article  CAS  Google Scholar 

  36. Douglas AS, Donald MW, Holler FJ, Stanley RC (1999) Analytical chemistry—an introduction, 7th edn. Saunders College Publishing, Philadelphia

    Google Scholar 

  37. Sun S, Jaffé PR (1996) Sorption of phenanthrene from water onto alumina coated with dianionic surfactants. Environ Sci Technol 30:2906–2913

    Article  CAS  Google Scholar 

  38. Huang L, Maltesh C, Somasundaran P (1996) Adsorption behavior of cationic and nonionic surfactant mixtures at the alumina–water interface. J Colloid Interface Sci 177:222–228

    Article  CAS  Google Scholar 

  39. Esumi K, Maedomari N, Torigoe K (2000) Mixed surfactant adsolubilization of 2-naphthol on alumina. Langmuir 16:9217–9220

    Article  CAS  Google Scholar 

  40. Tan Y, O’Haver JH (2004) Lipophilic linker impact on adsorption of and styrene adsolubilization in polyethoxylated octylphenols. Colloid Surf A 232:101–111

    Article  CAS  Google Scholar 

  41. Davies JT, Rideal EK (1963) Interfacial phenomena, 2nd edn. Academic Press, New York

    Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by the Royal Golden Jubilee Ph.D. Program (RGJ) of the Thailand Research Fund, and the National Center of Excellence for Environmental and Hazardous Waste Management (NCE-EHWM), Chulalongkorn University, Thailand. In additional, partial financial support for this research was received from the industrial sponsors of IASR, University of Oklahoma. Finally, funds from the Sun Oil Company Chair (D.A. Sabatini) at the University of Oklahoma helped support this research. We thank Ms. Victoria Stolarski from Sasol Company for providing us with the extended surfactants samples for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutha Khaodhiar.

About this article

Cite this article

Arpornpong, N., Lewlomphaisan, J., Charoensaeng, A. et al. Ethoxy Carboxylate Extended Surfactant: Surface Charge of Surfactant-Modified Alumina, Adsolubilization and Solubilization of Phenylethanol and Styrene. J Surfact Deterg 16, 291–298 (2013). https://doi.org/10.1007/s11743-012-1394-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-012-1394-4

Keywords

Navigation