Skip to main content
Log in

Effect of Organic Additives on the Phase Separation Phenomenon of Amphiphilic Drug Solutions

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The effect of various organic additives, viz. sugars, ureas, alcohols, hydrotropes and bile salts on the clouding (phase separation) phenomenon of the amphiphilic antidepressant drug amitriptyline hydrochloride was investigated in the present study. All sugars lowered the cloud point (CP) due to their water structure-making property. Urea and alkylureas were found to lower the CP. In contrast, thioureas increased the CP slightly, but the presence of methyl group(s) had a similar effect in alkylureas. Short chain alcohols affected the CP insignificantly while higher ones decreased it, and medium chain alcohols showed peak behavior. Addition of hydrotropes and bile salts increased the CP at lower concentrations, while a decrease was observed at higher concentrations (like the medium chain alcohols). In addition, thermodynamic parameters were also evaluated but only for those additives which formed mixed micelles with the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lang S (2002) Biological amphiphiles (microbial biosurfactants). Curr Opin Colloid Interface Sci 7:12–20

    Article  CAS  Google Scholar 

  2. Tiddy GJT, Khan A (1999) Formulation science and technology-surfactants needed. Curr Opin Colloid Interface Sci 4:379–380

    Article  CAS  Google Scholar 

  3. Schreier S, Malheiros SVP, de Paula E (2000) Surface active drugs: self-association and interaction with membranes and surfactants. Physicochemical and biological aspects. Biochim Biophys Acta 1508:210–234

    Article  CAS  Google Scholar 

  4. Taboada P, Attwood D, Ruso JM, Garcia M, Sarmiento F, Mosquera V (1999) Influence of molecular structure on the ideality of mixing in micelles formed in binary mixtures of surface-active drugs. J Colloid Interface Sci 216:270–275

    Article  CAS  Google Scholar 

  5. Attwood D, Tolley JA (1980) Self-association of analgesics in aqueous solution: association models for codeine, oxycodone, ethylmorphine and pethidine. J Pharm Pharmacol 32:761–765

    Article  CAS  Google Scholar 

  6. Shaw DJ (1970) Introduction to colloid and surface chemistry, 2nd edn. Butterworths, London

    Google Scholar 

  7. Rosen MJ (2004) Surfactants and interfacial phenomena, 3rd edn. Wiley, New York

    Book  Google Scholar 

  8. Raghupathy P, Mathiyarasu J, Joseph J, Phani KLN, Yegnaraman V (2005) Hydrotrope-driven disruption of micellar encapsulates for voltammetric detection of triclosan. J Electroanal Chem 584:210–214

    Article  CAS  Google Scholar 

  9. Martin DW, Mayes PA, Rodwell VW (1981) Harper’s review of biochemistry, 18th edn. Maurzen Asia, Tokyo

    Google Scholar 

  10. Asano H, Ueno M (1997) Physicochemical properties of bile salts. In: Esumi K, Ueno M (eds) Structure-performance relationship in surfactants. Surfactant Science Series 112. Dekker, New York

  11. Kabir-ud-Din, Rub MA, Naqvi AZ (2011) Aqueous amphiphilic drug (amitriptyline hydrochloride)–bile salt mixtures at different temperatures. Colloids Surf B 84:285–291

  12. Hinze WL (1987) Organized surfactant assemblies in separation science. In: Hinze WL, Armstrong DW (eds) Ordered media in chemical separations, ACS symposium series 342, American Chemical Society, Washington, DC

  13. Gu T, Galera-Gomez PA (1995) Clouding of Triton X-114: the effect of added electrolytes on the cloud point of Triton X-114 in the presence of ionic surfactants. Colloids Surf A 104:307–312

    Article  CAS  Google Scholar 

  14. Al-Ghamdi AM, Nasr-El-Din HA (1997) Clouding of Triton X-114: the effect of added electrolytes on the cloud point of Triton X-114 in the presence of ionic surfactants. Colloids Surf A 125:5–18

    Article  CAS  Google Scholar 

  15. Gu T, Galera-Gomez PA (1999) The effect of different alcohols and other polar organic additives on the cloud point of Triton X-100 in water. Colloids Surf A 147:365–370

    Article  CAS  Google Scholar 

  16. Schott H (2001) Effect of inorganic additives on solutions of nonionic surfactants—XVI. Limiting cloud points of highly polyoxyethylated surfactants. Colloids Surf A 186:129–136

    Article  CAS  Google Scholar 

  17. Bales BL, Zana R (2004) Cloud point of aqueous solutions of tetrabutylammonium dodecyl sulfate is a function of the concentration of counterions in the aqueous phase. Langmuir 20:1579–1581

    Article  CAS  Google Scholar 

  18. Kumar S, Sharma D, Khan ZA, Aswal VK, Kabir-ud-Din (2006) Clouding phenomenon and SANS studies on tetra-n-butylammonium dodecylsulfate micellar solutions in the absence and presence of salts. J Colloid Interface Sci 302:315–321

  19. Karlstrom G (1985) A new model for upper and lower critical solution temperatures in poly(ethylene oxide) solutions. J Phys Chem 89:4962–4964

    Article  Google Scholar 

  20. Tasaki K (1996) Poly(oxyethylene)–water interactions: a molecular dynamics study. J Am Chem Soc 118:8459–8469

    Article  CAS  Google Scholar 

  21. Kumar S, Sharma D, Kabir-ud-Din (2000) Cloud point phenomenon in anionic surfactant + quaternary bromide systems and its variation with additives. Langmuir 16:6821–6824

  22. Kumar S, Sharma D, Khan ZA, Kabir-ud-Din (2002) Salt-induced cloud point in anionic surfactant solutions: role of the headgroup and additives. Langmuir 18:4205–4209

  23. Kumar S, Sharma D, Kabir-ud-Din (2003) Temperature-[salt] compensation for clouding in ionic micellar systems containing sodium dodecyl sulfate and symmetrical quaternary bromides. Langmuir 19:3539–3541

  24. Kim EJ, Shah DO (2002) Cloud point phenomenon in amphiphilic drug solutions. Langmuir 18:10105–10108

    Article  CAS  Google Scholar 

  25. Alam MS, Naqvi AZ, Kabir-ud-Din (2007) Influence of organic additives on the clouding phenomena of promethazine hydrochloride solutions. Colloid Polym Sci 285:1573–1579

  26. Alam MS, Naqvi AZ, Kabir-ud-Din (2007) Influence of electrolytes/non-electrolytes on the cloud point phenomenon of the aqueous promethazine hydrochloride drug solution. J Colloid Interface Sci 306:161–165

  27. Alam MS, Naqvi AZ, Kabir-ud-Din (2007) Role of surfactants in clouding phenomenon of imipramine hydrochloride. Colloids Surf B 57:204–208

  28. Alam MS, Kabir-ud-Din, Mandal AB (2010) Thermodynamics at the cloud point of phenothiazine drug chlorpromazine hydrochloride-additive systems. J Chem Eng Data 55:1693–1699

  29. Britton HTS (1942) Hydrogen ions; their determination and importance in pure and industrial chemistry, vol 2, 3rd edn. Chapman, London

    Google Scholar 

  30. Attwood D, Florence AT (1983) Surfactant systems: their chemistry, pharmacy and biology. Chapman and Hall, New York

    Google Scholar 

  31. Alam MS, Kabir-ud-Din, Mandal AB (2010) Thermodynamics of the amphiphilic drug amitriptyline hydrochloride-surfactant/polymer systems at the cloud point. J Dispers Sci Technol 31:1721–1726

  32. Kabir-ud-Din, Rub MA, Naqvi AZ (2010) Mixed micelle formation between amphiphilic drug amitriptyline hydrochloride and surfactants (conventional and Gemini) at 293.15–308.15 K. J Phys Chem B 114:6354–6364

  33. Kabir-ud-Din, Rub MA, Naqvi AZ (2011) Mixed micelles of amphiphilic drug promethazine hydrochloride and surfactants (conventional and Gemini) at 293.15 K to 308.15 K: composition, interaction and stability of the aggregates. J Colloid Interface Sci 354:700–708

  34. Katzung BG (2004) Basic and clinical pharmacology, 9th edn. McGraw Hill, New York

    Google Scholar 

  35. Lakshmi TS, Nandi PK (1976) Effects of sugar solutions on the activity coefficients of aromatic amino acids and their N-acetyl ethyl esters. J Phys Chem 80:249–252

    Article  CAS  Google Scholar 

  36. Nozaki Y, Tanford C (1963) The solubility of amino acids and related compounds in aqueous urea solutions. J Biol Chem 238:4074–4081

    CAS  Google Scholar 

  37. Enea O, Jolicoeur CJ (1982) Heat capacities and volumes of several oligopeptides in urea-water mixtures at 25 °C. Some implications for protein unfolding. J Phys Chem 86:3870–3881

    Article  CAS  Google Scholar 

  38. Briganti G, Puvvada S, Blankschtien D (1991) Effect of urea on micellar properties of aqueous solutions of nonionic surfactants. J Phys Chem 95:8989–8995

    Article  CAS  Google Scholar 

  39. Candau S, Zana R (1981) Effect of alcohols on the properties of micellar systems: III. Elastic and quasielastic light scattering study. J Colloid Interface Sci 84:206–219

    Article  CAS  Google Scholar 

  40. Forland GM, Samseth J, Hoiland H, Mortensen K (1994) The effect of medium chain length alcohols on the micellar properties of sodium dodecyl sulfate in sodium chloride solutions. J Colloid Interface Sci 164:163–167

    Article  Google Scholar 

  41. Caponetti E, Chillura Martino D, Floriano MA, Triolo R (1997) Localization of n-alcohols and structural effects in aqueous solutions of sodium dodecyl sulfate. Langmuir 13:3277–3283

    Article  CAS  Google Scholar 

  42. Almgren M, Swarup S, Lofroth JE (1985) Effect of formamide and other organic polar solvents on the micelle formation of sodium dodecyl sulfate. J Phys Chem 89:4621–4626

    Article  CAS  Google Scholar 

  43. De Gennes PG, Taupin C (1982) Microemulsions and the flexibility of oil/water interfaces. J Phys Chem 86:2294–2304

    Article  Google Scholar 

  44. Abu-Hamdiyyah M, Rahman IA (1985) Strengthening of hydrophobic bonding and the increase in the degree of micellar ionization by amphiphiles and the micelle-water distribution coefficient as a function of the surfactant chain length in sodium alkyl sulfates. J Phys Chem 89:2377–2384

    Article  CAS  Google Scholar 

  45. Reekmans S, Luo H, Van der Auweraer M, De Schryver FC (1990) Influence of alcohols and alkanes on the aggregation behavior of ionic surfactants in water. Langmuir 6:628–637

    Article  CAS  Google Scholar 

  46. Mitchell DJ, Ninham BW (1981) Micelles, vesicles and microemulsions. J Chem Soc, Faraday Trans 2(77):601–629

    Google Scholar 

  47. Rao URK, Manohar C, Valaulikar BS, Iyer RM (1987) Micellar chain model for the origin of the viscoelasticity in dilute surfactant solutions. J Phys Chem 91:3286–3291

    Article  CAS  Google Scholar 

  48. Majhi PR, Mukerjee K, Moulik SP, Sen S, Sahu NP (1999) Solution properties of a saponin (Acaciaside) in the presence of Triton X-100 and Igepal. Langmuir 15:6624–6630

    Article  CAS  Google Scholar 

  49. Ghosh S, Moulik SP (1999) The clouding behaviours of binary mixtures of polyoxyethylene (10) Cetylether (Brij-56) with polyvinyl alcohol (PVA) and methyl cellulose (MC). Indian J Chem A 38:201–208

    Google Scholar 

  50. Blankschtein D, Thurston GM, Benedek GB (1986) Phenomenological theory of equilibrium thermodynamic properties and phase separation of micellar solutions. J Chem Phys 85:7268–7288

    Article  CAS  Google Scholar 

  51. Liu CL, Nikas YJ, Blankschtein D (1996) Novel bioseparations using two-phase aqueous micellar systems. Biotechnol Bioeng 52:185–192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India for a research grant (No. 01(2208)/08/EMR–II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malik Abdul Rub.

About this article

Cite this article

Rub, M.A., Asiri, A.M., Kumar, D. et al. Effect of Organic Additives on the Phase Separation Phenomenon of Amphiphilic Drug Solutions. J Surfact Deterg 15, 765–775 (2012). https://doi.org/10.1007/s11743-012-1354-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-012-1354-z

Keywords

Navigation