Skip to main content

Imidazolium, Pyridinium and Dimethyl-Ethylbenzyl Ammonium Derived Compounds as Mixed Corrosion Inhibitors in Acidic Medium


Seven cationic surfactants: 1-methyl-3-tetradecyl imidazolium bromide, 1-methyl-3-hexadecyl imidazolium bromide, N,N-tetradecyl pyridinium bromide, N,N-hexadecyl pyridinium bromide, N,N-dimethyl-N-ethylbenzyl ammonium bromide, N,N-dimethyl-N-ethylbenzyl ammonium laurate and N,N-dimethyl-N-ethylbenzyl ammonium acetate, were investigated at different doses (10, 25, 50, 100, and 200 ppm) as corrosion inhibitors for steel grade API 5L X52 in hydrochloric acid 2 M using a weight loss technique, impedance and polarization resistance methods. The corrosion inhibition of steel grade API 5L X52 of the cationic surfactants was attributed to their molecular structure (heterocyclic ring, hydrophobic chain length and counterion) that enhances adsorption onto steel surface. The best protective efficiency of the film was higher than 90% (N,N-Dimethyl-N-ethylbenzyl ammonium acetate). It is important to know how organic inhibitor films grown on the metallic surface in order to achieve superior corrosion inhibition, hence experimental findings were described by Langmuir adsorption isotherm. The Electrochemical Impedance Spectroscopy spectrums were fitted by means of the Voigt model.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6



1-Methyl-3-tetradecyl imidazolium bromide


1-Methyl-3-hexadecyl imidazolium bromide


N,N-Tetradecyl pyridinium bromide


N,N-Hexadecyl pyridinium bromide


N,N-Dimethyl-N-ethylbenzyl ammonium bromide


N,N-Dimethyl-N-ethylbenzyl ammonium laurate


N,N-Dimethyl-N-ethylbenzyl ammonium acetate


  1. 1.

    Negm NA, Mohamed AS (2004) Surface and thermodynamics properties of diquaternary bola-form amphiphiles containing and aromatic spacer. J Surfactant Deterg 7:23–30

    Article  CAS  Google Scholar 

  2. 2.

    Martin RL (2003) Corrosion inhibitors for oil and gas production. In: Cramer SD, Covino BS (eds) ASM handbook. ASM International, New York, vol 13A, pp 878–886

    Google Scholar 

  3. 3.

    Kane RD (2003) Corrosion in petroleum production operations. In: Cramer SD, Covino BS (eds) ASM handbook. ASM International, New York, vol 13C, pp 922–966

    Google Scholar 

  4. 4.

    Negm NA, Aiad IAJ (2007) Synthesis and characterization of multifunctional surfactants in oil-field protection applications. J Surfactant Deterg 10:87–92

    Article  CAS  Google Scholar 

  5. 5.

    Bhaskaran R, Palaniswamy N, Rengaswamy NS, Jayachandran M (2003) Global cost of corrosion-a historical review. In: Cramer SD, Covino BS (eds) ASM handbook. ASM International, New York, vol 13B, pp 621–628

    Google Scholar 

  6. 6.

    Wojtanowicz AK (2008) Environmental control technology for oilfield processes. In: Orszulik ST (ed) Environmental technology in the oil industry. Springer, Berlin, pp 17–51

    Chapter  Google Scholar 

  7. 7.

    Buck E (1995) Inhibitors. In: Babonian R (ed) Corrosion test y standards: application and interpretation. ASTM, Fredericksburg, pp 403–410

    Google Scholar 

  8. 8.

    Pérez-Navarrete JB, Likhanova NV, Plomar ME, Herrea H, Romer M (2008) Electrochemical evaluation of new synthesised ionic liquids as steel corrosion inhibitors in H2SO4 1.0 M. XXI Week of Chemistry and Chemical Education, Mexico City, pp 581–592

    Google Scholar 

  9. 9.

    Negm NA, Morsy SMI (2005) Corrosion inhibition of triethanolammonium bromide mono and dibenzoate as cationic inhibitors in an acidic medium. J Surfactant Deterg 8:283–287

    Article  CAS  Google Scholar 

  10. 10.

    Morelli JJ, Szajer G (2001) Analysis of surfactants: part II. J. Surfactant Deterg 4:75–83

    Article  CAS  Google Scholar 

  11. 11.

    Bellmann C (2008) Surface modification by adsorption of polymers and surfactants. In: Stamm M (ed) Polymer surfaces and interfaces. Springer, Berlin, pp 235–259

    Chapter  Google Scholar 

  12. 12.

    Abd El–Maksoud SA (2008) The effect of organic compounds on the electrochemical behaviour of steel in acidic media. A review. Int J Electrochem Sci 3:528–555

    Google Scholar 

  13. 13.

    Pérez-Navarrete JB (2009) Síntesis y evaluación de surfactantes catiónicos (Spanish). UAM, Mexico

    Google Scholar 

  14. 14.

    Selvi T, Raman V, Rajendran N (2003) Corrosion inhibition of mild steel by benzotriazole derivatives in acidic medium. J Appl Electrochem 33:1175–1182

    Article  Google Scholar 

  15. 15.

    Syed Azim S, Muralidharan S, Venkatakrishna Iyer S (1995) Studies on the influence of iodide ions on the synergistic inhibition of the corrosion of mild steel in an acidic solution. J Appl Electrochem 25:495–500

    Article  Google Scholar 

  16. 16.

    Wagner C, Traud W (2006) On the interpretation of corrosion process trough the superposition of electrochemical partial processes and on the potential of mixed electrodes. Corrosion 62:844–855

    Article  CAS  Google Scholar 

  17. 17.

    Tang YM, Chen Y, Yang WZ, Liu Y, Yin XS, Wang JT (2008) Electrochemical and theoretical studies of thienyl-substituted amino triazoles on corrosion inhibition of copper in 0.5 M H2SO4. J Appl Electrochem 38:1553–1559

    Article  CAS  Google Scholar 

  18. 18.

    Stern M, Geary AL (1957) Electrochemical polarization, I. A theoretical analysis of the shape of polarization curves. J Electrochem Soc 104:56–93

    Article  CAS  Google Scholar 

  19. 19.

    Li WH, He Q, Zhang ST, Pei CL, Hou BR (2008) Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium. J Appl Electrochem 3:289–295

    Article  Google Scholar 

  20. 20.

    Migahed MA, Abd-El-Raouf M, Al-Sabagh AM, Abd-El-Bary HM (2006) Corrosion inhibition of carbon steel in acid chloride solution using ethoxylated fatty alkyl amine surfactants. J Appl Electrochem 36:395–402

    Article  CAS  Google Scholar 

  21. 21.

    Macdonald DD (2007) Theory of passive film stability. ECS Trans 2:73–81

    Article  Google Scholar 

  22. 22.

    Chin RJ, Nobe K (1972) Electrodissolution kinetics of iron in chloride solutions, III. Acidic solutions. J Electrochem Soc 119:1457–1461

    Article  CAS  Google Scholar 

  23. 23.

    Deyab MA (2007) Effect of cationic surfactant and inorganic anions on the electrochemical behaviour of carbon steel in formation water. Corros Sci 49:2315–2328

    Article  CAS  Google Scholar 

  24. 24.

    Epelboin I, Keddam M, Takenouti H (1972) Use of impedance measurements for the determination of the instant rate of metal corrosion. J Appl Electrochem 2:71–79

    Article  CAS  Google Scholar 

  25. 25.

    Ruthven DM (1984) Principles of adsorption and adsorption process. Wiley, USA

    Google Scholar 

  26. 26.

    Yashkin SN, Schuster RH (2003) Investigation of energetic heterogeneity of carbon black surfaces during adsorption of chromatographically low concentrations of n-pentane. Russ Chem Bull Int Ed 52:2360–2368

    Article  CAS  Google Scholar 

  27. 27.

    Pérez-Navarrete JB, Olivares-Xometl CO, Likhanova NV (2010) Adsorption and corrosion inhibition of amphiphilic compounds on steel pipeline grade API 5L X52 in sulphuric acid 1 M. J Appl Electrochem 40:1605–1617

    Article  Google Scholar 

  28. 28.

    Yang CH (1993) Statistical mechanical aspects of adsorption systems obeying the Temkin isotherm. J Phys Chem 97:7097–7101

    Article  CAS  Google Scholar 

  29. 29.

    Parsons R (1959) The relation between the capacity of the electrode double layer and the adsorption of surface active material. Trans Faraday Soc 55:999–1006

    Article  CAS  Google Scholar 

  30. 30.

    Kerner Z, Pajkossy T (2000) On the origin of capacitance dispersion of rough electrodes. Electrochim Acta 46:207–211

    Article  CAS  Google Scholar 

  31. 31.

    Tvardovski A, Tondeur D, Favre E (2003) Description of multicomponent adsorption and absorption phenomena from a single viewpoint. J Coll Interf Sci 265:239–244

    Article  CAS  Google Scholar 

  32. 32.

    Le Mehaute A, Crepy G (1983) Introduction to transfer and motion in fractal media: the geometry of kinetics. Solid State Ion 9:17–30

    Article  Google Scholar 

  33. 33.

    Macdonald DD (2006) Reflections on the history of electrochemical impedance spectroscopy. Electrochim Acta 51:1376–1388

    Article  CAS  Google Scholar 

  34. 34.

    Orazem ME, Agarwal P, Deslouis C, Tribollet B (1996) Application of measurement models to electrohydrodynamic impedance spectroscopy. J Electrochem Soc 143:948–960

    Article  CAS  Google Scholar 

  35. 35.

    Kanoun O, Tröltzsch U, Tränkler HR (2006) Benefits of evolutionary strategy in modelling of impedance spectra. Electrochim Acta 51:1453–1461

    Article  CAS  Google Scholar 

  36. 36.

    Urquidi-Macdonald M, Real S, Macdonald DD (1990) Applications of Kramers-Kronig transformation in the analysis of electrochemical impedance data-III, stability and linearity. Electrochim Acta 35:1559–1566

    Article  CAS  Google Scholar 

  37. 37.

    Esteban JM, Orazem ME (1991) On the application of the Kramers-Kronig relations to evaluate the consistency of electrochemical impedance data. J Electrochem Soc 138:67–76

    Article  CAS  Google Scholar 

  38. 38.

    Agarwal P, Orazem ME, García-Rubio LH (1993) Application of the Kramers-Kronig relations in electrochemical impedance spectroscopy. In: Scully JR, Silverman DC, Kendig MW (eds) Electrochemical impedance: analysis and interpretation. ASTM, Fredericksburg, pp 115–137

    Chapter  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jonathán-Boanerge Pérez-Navarrete.

Electronic supplementary material

About this article

Cite this article

Palomar, M.E., Olivares-Xometl, C.O., Likhanova, N.V. et al. Imidazolium, Pyridinium and Dimethyl-Ethylbenzyl Ammonium Derived Compounds as Mixed Corrosion Inhibitors in Acidic Medium. J Surfact Deterg 14, 211–220 (2011).

Download citation


  • Cationic surfactant
  • Acid corrosion inhibitor
  • Polarization
  • EIS
  • Constant phase element
  • Models