Skip to main content
Log in

Effects of Spacers on Surface Activities and Aggregation Properties of Anionic Gemini Surfactants

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

This present article employs four anionic Gemini surfactants with different spacer groups and investigates their physicochemical and aggregation properties. The critical micelle concentration (CMC), surface tension at CMC (γCMC) and C 20 of these surfactants have been investigated using the du Nouy ring method. The aggregation number (N) was determined with intrinsic fluorescence quenching method using pyrene as a fluorescence probe and benzophenone as a quencher. Results show that these anionic Gemini surfactants have lower CMC and C 20 values compared with those conventional ones and show higher surface activity. As expected, the spacer plays an important role in the aggregation properties of Gemini surfactants. Under experimental conditions, Gemini B–D with an alkoxylated group as spacer has a lower CMC and a higher aggregation number than Gemini A with methylene as spacer. For Gemini B–D, the CMC and aggregation number values decrease with the increasing flexible spacer length. The micropolarity also affects the aggregation of the present anionic Gemini surfactants. The micropolarity of micelle becomes low when the concentration of surfactants increases. Aggregation numbers of surfactants increase and fluorescence intensities decrease with the increasing concentration of NaCl. These results will help us to understand the relationship between the architectures of Gemini surfactants and their various properties in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AS:

Sodium dodecyl sulfonate

CMC:

Critical micelle concentration

CTAB:

Cetyl trimethyl ammonium bromide

SDBS:

Sodium dodecylbenzene sulfonate

SDS:

Sodium dodecyl sulfate

References

  1. Menger FM, Keiper JS (2000) Gemini surfactants. Angew Chem Int Ed 391:1906–1920

    Article  Google Scholar 

  2. Kim SS, Zhang WZ, Pinnavaia TJ (1998) Ultrastable Mesostructured Silica Vesicles. Science 282:1302–1305

    Article  CAS  Google Scholar 

  3. Bunton CA, Robinson L, Shaak J, Stam MF (1971) Catalysis of nucleophilic substitutions by micelles of dicationic detergents. J Org Chem 36:2346–2350

    Article  CAS  Google Scholar 

  4. Bunton CA, Minch MJ, Hidalgo J, Sepulveda L (1973) Electrolyte effects on the cationic micelle catalyzed decarboxylation of 6-nitrobenzisoxazole-3-carboxylate anion. J Am Chem Soc 95:3262–3272

    Article  CAS  Google Scholar 

  5. De S, Aswal VK, Goyal PS, Bhattacharya S (1996) Role of spacer chain length in dimeric micellar organization. Small angle neutron scattering and fluorescence studies. J Phys Chem 100:11664–11671

    Article  CAS  Google Scholar 

  6. Zana R, Benrraou M, Rueff R (1991) Alkanediyl-.alpha.,omega.-bis(dimethyl alkylammonium bromide) surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir 7:1072–1075

    Article  CAS  Google Scholar 

  7. Bai GY, Yan HK, Thomas RK (2001) Microcalorimetric studies on the thermodynamic properties of cationic Gemini surfactants. Langmuir 17:4501–4504

    Article  CAS  Google Scholar 

  8. Frindi M, Michels B, Levy H, Zana R (1994) Alkanediyl-alpha, omega-bis (dimethyl alkylammonium bromide) surfactants. 4. Ultrasonic absorption studies of amphiphile exchange between micelles and bulk phase in aqueous micellar solution. Langmuir 10:1040–1145

    Article  Google Scholar 

  9. De S, Aswal VK, Goyal PS, Bhattacharya S (1998) Novel Gemini micelles from dimeric surfactants with oxyethylene spacer chain. Small angle neutron scattering and fluorescence studies. J Phys Chem B 102:6152–6160

    Article  CAS  Google Scholar 

  10. Rosen MJ, Song LD (1996) Dynamic surface tension of aqueous surfactant solutions 8. Effect of spacer on dynamic properties of Gemini surfactant solutions. J Colloid Interface Sci 179:261–268

    Article  CAS  Google Scholar 

  11. Kern F, Lequeux F, Zana R, Candau SJ (1994) Dynamic properties of salt-free viscoelastic micellar solutions. Langmuir 10:1714–1723

    Article  CAS  Google Scholar 

  12. Danino D, Talmon Y, Zana R (1995) Alkanediyl-alpha, omega-bis(dimethyl alkylammonium bromide) surfactants (dimeric surfactants). 5. Aggregation and microstructure in aqueous solutions. Langmuir 10:1448–1456

    Article  Google Scholar 

  13. In M, Bec V, Aguerre-Chariol O, Zana R (2000) Quaternary ammonium bromide surfactant oligomers in aqueous solution: Self-association and microstructure. Langmuir 16:141–148

    Article  CAS  Google Scholar 

  14. Rosen MJ, Mathias JH, Davenport L (1999) Aberrant aggregation behavior in cationic Gemini surfactants investigated by surface tension, interfacial tension, and fluorescence methods. Langmuir 15:7340–7346

    Article  CAS  Google Scholar 

  15. Chen QB, Liang XD, Wang SL, Xu SH, Liu HL, Hu Y (2007) Cationic Gemini surfactant at the air/water interface. J Colloid Interface Sci 314:651–658

    Article  CAS  Google Scholar 

  16. Alami E, Levy H, Zana R, Skoulios A (1993) Alkanediyl-alpha, omega-bis(dimethyl alkylammonium bromide) surfactants. 2. Structure of the lyotropic mesophases in the presence of water. Langmuir 9:940–944

    Article  CAS  Google Scholar 

  17. Zana R, In M, Lévy H (1997) Alkanediyl-α, ω-bis(dimethyl alkylammonium bromide). 7. Fluorescence probing studies of micelle micropolarity and microviscosity. Langmuir 13:5552–5557

    Article  CAS  Google Scholar 

  18. Mathias JH, Rosen MJ, Davenport L (2001) Fluorescence study of premicellar aggregation in cationic Gemini surfactants. Langmuir 17:6148–6154

    Article  CAS  Google Scholar 

  19. Junior PBS, Tiera VAO, Tiera MJ (2007) A fluorescence probe study of Gemini surfactants in aqueous solution: a comparison between n-2-n and n-6-n series of the alkanediyl-a, w-bis (dimethyl alkylammonium bromides. Ecl Quím São Paulo 32:47–54

    CAS  Google Scholar 

  20. Oda R, Huc I, Danino D, Talmon Y (2000) Aggregation properties and mixing behavior of hydrocarbon, fluorocarbon, and hybrid hydrocarbon-fluorocarbon cationic dimeric surfactants. Langmuir 16:9759–9769

    Article  CAS  Google Scholar 

  21. Li F, Rosen MJ, Sulthana SB (2001) Surface properties of cationic Gemini surfactants and their interaction with alkylglucoside or maltoside surfactants. Langmuir 17:1037–1042

    Article  CAS  Google Scholar 

  22. Pinazo A, Wen X, Pérez L, Infante M-R, Franses EI (1999) Aggregation behavior in water of monomeric and Gemini cationic surfactants derived from arginine. Langmuir 15:3134–3142

    Article  CAS  Google Scholar 

  23. Zhu YP, Masuyama A, Okahara M (1990) Preparation and surface active properties of amphipathic compounds with two sulfate groups and two lipophilic alkyl chains. J Am Oil Chem Soc 67:459–463

    Article  CAS  Google Scholar 

  24. Zhu YP, Masuyama A, Okahara M (1991) Preparation and surface-active properties of new amphipathic compounds with two phosphate groups and two long-chain groups. J Am Oil Chem Soc 68:268–271

    Article  CAS  Google Scholar 

  25. Zhu YP, Masuyama A, Kobata Y, Nakatsuji Y, Okahara M, Rosen MJ (1993) Double-chain surfactants with two carboxylate groups and their relation to similar double-chain compounds. J Colloid Interface Sci 158:40–45

    Article  CAS  Google Scholar 

  26. Menger FM, Littau CA (1991) Gemini surfactants: synthesis and properties. J Am Chem Soc 113:1451–1452

    Article  CAS  Google Scholar 

  27. Duivenvoorde FL, Feiters MC, van der Gaast SJ, Engberts JBFN (1997) Synthesis and properties of di-n-dodecyl α, ω-alkyl bisphosphate surfactants. Langmuir 13:3737–3743

    Article  CAS  Google Scholar 

  28. Dix LR (2001) Sodium salts of bis(1-dodecenylsuccinamic acids): a simple route to anionic Gemini surfactants. J Colloid Interface Sci 238:447–448

    Article  CAS  Google Scholar 

  29. Magdassi S, Ben Moshe M, Talmon Y, Danino D (2003) Microemulsions based on anionic Gemini surfactant. Colloids Surf A 212:1–7

    Article  CAS  Google Scholar 

  30. Yoshimura T, Esumi K (2004) Synthesis and surface properties of anionic Gemini surfactants with amide groups. J Colloid Interface Sci 276:231–238

    Article  CAS  Google Scholar 

  31. Du XG, Li L, Yang ZY (2007) Fluorescence investigation of aggregation behaviors of novel anionic Gemini surfactants. Z Phys Chem 221:873–879

    CAS  Google Scholar 

  32. Menger FM, Littau CA (1993) Gemini surfactants: a new class of self-assembling molecules. J Am Chem Soc 115:10083–10090

    Article  CAS  Google Scholar 

  33. Wettig SD, Verrall RE (2001) Thermodynamic studies of aqueous msm Gemini surfactant systems. J Colloid Interface Sci 235:310–316

    Article  CAS  Google Scholar 

  34. Wettig SD, Nowak P, Verrall RE (2002) Thermodynamic and aggregation properties of Gemini surfactants with hydroxyl substituted spacers in aqueous solution. Langmuir 18:5354–5359

    Article  CAS  Google Scholar 

  35. Menger FM, Keiper JS, Azov V (2000) Gemini surfactants with acetylenic spacers. Langmuir 16:2062–2067

    Article  CAS  Google Scholar 

  36. Zhu S, Cheng F, Wang J (2006) Anionic Gemini surfactants: synthesis and aggregation properties in aqueous solutions. Colloids Surf A 281:35–39

    Article  CAS  Google Scholar 

  37. Zhu S, Cheng F, Wang J (2004) Aggregation properties of a new anionic Gemini surfactant in aqueous solution. Acta Physico-Chimica Sinica 20:1245–1248

    CAS  Google Scholar 

  38. Theander K, Pugh RJ (2001) The influence of pH and temperature on the equilibrium and dynamic surface tension of aqueous solutions of sodium oleate. J Colloid Interface Sci 239:209–216

    Article  CAS  Google Scholar 

  39. Chen GZ (1990) Fluorescence analysis. Science Press, Beijing

    Google Scholar 

  40. Kalyansundaram K, Thomas JK (1977) Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 99:2039–2044

    Article  Google Scholar 

  41. Ananthapadmanabhan KP, Goddard ED, Turro NJ, Kuo PL (1985) Fluorescence probes for critical micelle concentration determination. Langmuir 1:352–355

    Article  Google Scholar 

  42. Turro NJ, Kuo PL (1986) Photoluminescence probes for pressure and temperature effects on the aggregates of water-soluble block copolymers. J Phys Chem 90:4205–4210

    Article  CAS  Google Scholar 

  43. Rosen MJ (1989) Surfactants and interfacial phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  44. Fang Y, Liu XF, Xia YM, Yang Y, Cai K, Xu YM, Zhao XY (2001) Determination of critical micellar aggregation numbers by steady-state fluorescence probe method. Acta Physico-Chimica Sinica 17:828–831

    CAS  Google Scholar 

  45. Wang XY, Wang JB, Wang YL, Yan HK, Li PX, Thomas RK (2004) Effect of the nature of the spacer on the aggregation properties of Gemini surfactants in an aqueous solution. Langmuir 20:53–56

    Article  Google Scholar 

  46. Dreja M, Pyckhout-Hintzen W, Tiecke B (1999) Cationic Gemini surfactants with oligo (oxyethylene) spacer groups and their use in the polymerization of styrene in ternary microemulsion. Langmuir 15:391–399

    Article  CAS  Google Scholar 

  47. Missel PJ, Mazer NA, Benedek GB, Young CY, Carey MC (1980) Thermodynamic analysis of the growth of sodium dodecyl sulfate micelles. J Phys Chem 84:1044–1057

    Article  CAS  Google Scholar 

  48. Lin TL, Chen SH, Gabriel NE, Roberts MF (1987) Small-angle neutron scattering techniques applied to the study of polydisperse rodlike diheptanoylphosphatidylcholine micelles. J Phys Chem 91:406–413

    Article  CAS  Google Scholar 

  49. Hait SK, Moulik SP (2006) Gemini surfactants: a distinct class of self-assembling molecules. Curr Sci 82:1101–1111

    Google Scholar 

  50. Myers D (1999) Surfaces, interfaces and colloids: principles and applications, 2nd edn. Wiley, New York

    Google Scholar 

  51. Benrraou M, Bales BL, Zana R (2003) Effect of the nature of the counterion on the properties of anionic surfactants. 1. CMC, ionization degree at the CMC and aggregation number of micelles of sodium, cesium, tetramethylammonium, tetraethylammonium, tetrapropylammonium, and tetrabutylammonium dodecyl sulfates. J Phys Chem B 107:13432–13440

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for financial support form the Shengli Oilfield Company Limited, China National Petrochemical Corporation (Grants 61-2006-ZSCQ-00077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuping Wei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 57 kb)

About this article

Cite this article

Cao, X., Li, Z., Song, X. et al. Effects of Spacers on Surface Activities and Aggregation Properties of Anionic Gemini Surfactants. J Surfact Deterg 12, 165–172 (2009). https://doi.org/10.1007/s11743-009-1108-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-009-1108-8

Keywords

Navigation