Journal of Surfactants and Detergents

, Volume 9, Issue 3, pp 267–277 | Cite as

Parametric study of surfactant effect on mechanical and dissolution properties of detergent tablets

  • F. Chantraine
  • M. VianaEmail author
  • N. Brielles
  • O. Mondain-Monval
  • C. Pouget
  • P. Branlard
  • G. Rubinstenn
  • D. Chulia


The aim of this study is to investigate the functional characteristics (mechanical strength and disintegration time) of effervescent detergent tablets containing chlorine provider in the presence of surfactant. A preliminary study high-lighted that the presence of 2% of sodium dodecyl sulfate (SDS) was not favorable to the tablet mechanical properties, inducing a lower “bonding ability,” whereas the disintegration time increased, compared with the reference tablets without surfactant. The linear relationship between the disintegration time and the end-dissolution time led us to consider just the disintegration time to express the behavior of the tablets in water. A parametric study has been completed to assess the influence of the mixing method, the nature, the hydrophilic-lipophilic balance, the granulometry, and the concentration of the surfactant on the tablet properties. In all cases, surfactant presented adverse effects on the mechanical properties and had a retarding effect on disintegration time, but neither solubility, hydrophilic-lipophilic balance, interfacial properties, nor ionic character could be clearly involved to explain surfactant contribution. Furthermore, tablet dissolution could not be correlated to surfactant available surface, as evidenced by granulometry comparison on one side and concentration impact on the other side (a similar effect was observed from 1 to 15%). On the contrary, mechanical properties were damaged as much as the area developed by surfactant particles increased. On the basis of this work, it has been concluded that SDS interacts with the other compounds of the formula by creating weak interparticle bonds and limiting water uptake responsible for disintegration.

Key Words

Detergent disintegration surfactant tablet tensile strength formulation 



hydrophilic lipophilic balance


potassium dodecyl sulfate


sodium dodecyl sulfate


scanning electron microscopy


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brunauer, S., P.H. Emmett, and E. Teller, The Use of Low Temperature Van der Waals Adsorption Isotherm in Determining Surface Area, J. Am. Chem. Soc. 60:309 (1938).CrossRefGoogle Scholar
  2. 2.
    Viana, M., P. Jouannin, C. Pontier, and D. Chulia, About Pycnometric Density Measurements, Talanta 57:583 (2002).CrossRefGoogle Scholar
  3. 3.
    Fell, J.T., and J.M. Newton, Determination of Tablets Strength by the Diametral-Compression Test, J. Pharm. Sci. 59:688 (1970).CrossRefGoogle Scholar
  4. 4.
    Handbook of Detergent, Part A: Properties, Surfactant Science Series, Volume 82, Chap. 2, Marcel Dekker, Inc., New York, 1999.Google Scholar
  5. 5.
    Ryshkewitch, E., Compression Strength of Porous Sintered Alumina and Zirconia, J. Am. Ceram. Soc. 36:65 (1953).CrossRefGoogle Scholar
  6. 6.
    Duckworth, W.H., Discussion of Ryskewitch Paper by Winston Duckworth, J. Am. Ceram. Soc. 36:68 (1953).CrossRefGoogle Scholar
  7. 7.
    Mbali-Pemba, C., and D. Chulia, Analysis of the Comprimability of Particulate Materials, Physical and Mechanical Characterization of Different Grades of Lactose, 6th Int. Conf. Pharm. Technol., Vol. 1:410, Paris, 1992.Google Scholar
  8. 8.
    Zuurman, K., K. Van der Voort Maarschalk, and G.K. Bolhuis, Effect of Magnesium Stearate on Bonding and Porosity Expansion of Tablets Produced from Materials with Different Consolidation Properties, Int. J. Pharm. 179:107 (1999).CrossRefGoogle Scholar
  9. 9.
    Pena Romero, A., C. Caramella, M. Ronchi, F. Ferrari, and D. Chulia, Water Uptake and Force Development in an Optimized Prolonged Release Formulation, 9th Pharm. Technol. Conference, Veldhoven, Netherlands, 4–6 April 1990.Google Scholar
  10. 10.
    Guyot-Hermann, A.M., Tablet Disintegration and Disintegrating Agents, STP Pharm. Sci. 2:445 (1992).Google Scholar
  11. 11.
    Siriwardena, S., H. Isamail, and U.S. Ishiaku, Effect of Mixing Sequence in the Preparation of White Rice Husk Ash Filled Polypropylene/Ethylene-Propylene-Diene Monomer Blend, Polym. Test. 20:105 (2001).CrossRefGoogle Scholar
  12. 12.
    Masteau, J.C., and G. Thomas, Modélisation de l'évolution de la porosité de poudres pharmaceutiques comprimées, J. Chim. Phys. 94:598 (1997).Google Scholar
  13. 13.
    Heckel, R.W., Density-Pressure Relationship in Powder Compaction. Trans. Metall. Soc. AIME 221:671 (1961).Google Scholar
  14. 14.
    Duberg, M., and C. Nyström, Studies on Direct Compression of Tablets XVII. Porosity-Pressure Curves for the Characterization of Volume Reduction Mechanisms in Powder, Powder Technol. 46:67 (1986).CrossRefGoogle Scholar
  15. 15.
    Niraula, B., T.C. King, and M. Misran, Evaluation of Rheology Property of Dodecyl Maltoside, Sucrose Dodecanoate, Brij 35p and SDS Stabilized O/W Emulsion: Effect of Head Group Structure on Rheology Property and Emulsion Stability, Colloids Surf. A: Physicochem. Eng. Aspects 251:59 (2004).CrossRefGoogle Scholar
  16. 16.
    Nyström, C., G. Alderborn, M. Duberg, and P.-G. Karehill, Bonding Surface Area and Bonding Mechanism—Two Important Factors for the Understanding of Powder Compactibility, Drug Dev. Ind. Pharm. 19:2143 (1993).Google Scholar
  17. 17.
    Sunada, H., and Y. Bi, Preparation, Evaluation and Optimization of Rapidly Disintegrating Tablets, Powder Technol. 122:188 (2002).CrossRefGoogle Scholar
  18. 18.
    Mbali-Pemba, C., Fonctionnalité des matériaux particulaires: application à la comprimabilité des lactoses, Ph.D. Thesis, University of Limoges, 1994.Google Scholar
  19. 19.
    Ferrari, F., M. Bertoni, M.C. Bonferoni, S. Rossi, C. Caramella, and C. Nyström, Investigation on Bonding and Disintegration Properties of Pharmaceutical Materials, Int. J. Pharm. 136:71 (1996).CrossRefGoogle Scholar
  20. 20.
    Handbook of Pharmaceutical Excipients, 4th edition, edited by Rowe, R.C., P.J. Sheskey, and P.J. Weller, Pharmaceutical Press, Chicago, 2003.Google Scholar
  21. 21.
    Brielles, N., F. Chantraine, O. Mondain-Monval, D. Roux, M. Viana, D. Chulia, P. Branlard, and G. Rubinstenn, Detergent Tablets Dissolution: Effect of Process Parameters and Formulation, Formula IV: Frontiers in Formulation Science, 4–7 July, London, UK, 2005.Google Scholar
  22. 22.
    Chantraine, F., M. Viana, N. Brielles, O. Mondain-Monval, C. Pouget, P. Branlard, G. Rubinstenn, and D. Chulia, Characterization of Porous Textures in Order to Explain the Influence of a Surfactant on the End-Use Properties of Detergent Tablets, J. Porous Mat. (in press).Google Scholar
  23. 23.
    Smith, L.A., A. Duncan, G.B. Thomson, K.J. Roberts, D. Machin, and G. McLeod, Crystallisation of Sodium Dodecyl Sulphate from Aqueous Solution: Phase Identification, Crystal Morphology, Surface Chemistry and Kinetic Interface Roughening, J. Cryst. Growth 26:480 (2004).CrossRefGoogle Scholar
  24. 24.
    Smith, L.A., K.J. Roberts, D. Machin, and G. McLeod, An Examination of the Solution Phase and Nucleation Properties of Sodium, Potassium and Rubidium Dodecyl Sulphates, J. Cryst. Growth 226:158 (2001).CrossRefGoogle Scholar

Copyright information

© AOCS Press 2006

Authors and Affiliations

  • F. Chantraine
    • 1
    • 2
  • M. Viana
    • 2
    Email author
  • N. Brielles
    • 1
    • 3
  • O. Mondain-Monval
    • 3
  • C. Pouget
    • 2
  • P. Branlard
    • 1
  • G. Rubinstenn
    • 1
  • D. Chulia
    • 2
  1. 1.ZAC les PeyrardesEUROTABSaint-Just-Saint-RambertFrance
  2. 2.EA 2631, Faculté de PharmacieGEFSODLimoges CedexFrance
  3. 3.CNRS-UPR 8641CRPPPessacFrance

Personalised recommendations