Skip to main content
Log in

Use of liquid chromatography-mass spectroscopy for studying the composition and properties of rhamnolipids produced by different strains of Pseudomonas aeruginosa

  • Published:
Journal of Surfactants and Detergents

Abstract

Biosurfactants are produced as a mixture of different homologs. The application of liquid chromatography-electrospray mass spectrometry in negative mode for the analysis of rhamnolipid mixtures AT10 and 47T2 has been studied. Working at low (up to −35V) extraction voltages, the [M-H] for each compound was obtained. Increasing this potential to −75V produced an increase in the fragmentation of compounds and enabled the co-eluting isomers of rhamnolipids to be distinguished and their proportions in the sample to be calculated. In this work, the physicochemical and biological properties of two different rhamnolipid mixtures produced by two Pseudomonas strains RLAT10 (Rha-Rha-C10-C10; Rha-Rha-C10-C12:1; Rha-Rha-C10-C12; Rha-C10-C12:1; Rha-C10-C10; RhaC10-C12:1; Rha-C10-C12; Rha-C8:1; Rha-C12:2) and RL47T2 (Rha-Rha-C8-C10; Rha-Rha-C8-C12:1; Rha-Rha-C10-C10; Rha-Rha-C10-C12:1; Rha-Rha-C10-C12; Rha-Rha-C12-C10; Rha-Rha-C12:1-C12; Rha-Rha-C10-C14:1; Rha-C8-C10; Rha-C10-C8; Rha-C10-C10; Rha-C10-C12:1; Rha-C10-C12; Rha-C12-C10, where Rha=rhamnose moiety) are compared. The surface tensions found were 26.8 and 32.8 mN/m for RLAT10 and RL47T2, respectively. These two products differ in their antimicrobial properties, as based on their minimal inhibition concentrations (MIC). RLAT10 was effective against the fungal species (MIC) Aspergillus niger (16 μg/mL); Gliocadium virens (16 μg/mL); Penicillium chrysogenum (32 μg/mL); Botrytis cinerea (18 μg/mL); and Rhizoctonia solani (18 μg/mL), whereas RL47T2 was more effective against the bacteria (MIC) Enterobacter aerogenes (4 μg/mL); Serratia marcescens (8 μg/mL); Bacillus subtilis (16 μg/mL); and Staphylococcus aureus (32 μg/mL).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CID:

collison-induced dissociation

ES:

electrospray

FFA:

free fatty acids

LC:

fleuid chromatography

MIC:

minimal inhibition concentration

MS:

mass spectrometry

M.W.:

molecular weight

Rha:

rhamnose moiety

RL:

rhamnolipi

References

  1. Linhardt, R.J., Microbially Produced Rhamnolipid as a Source of Rhamnose, Biotechnol. Bioeng. 33:365 (1989).

    Article  CAS  Google Scholar 

  2. Parra, J., J. Pastor, F. Comelles, A. Manresa, and M. Bosch, Studies of Biosurfactants Obtained from Olive Oil, Tenside Surfactants Deterg. 27:302 (1990).

    CAS  Google Scholar 

  3. Olvera, C., J. Goldberg, R. Sánchez, and G. Soberón-Chávez, The Pseudomonas aeruginosa algC Gene Product Participates in Rhamnolipid Biosynthesis, FEMS Microbiol. Lett. 179:85 (1999).

    Article  CAS  Google Scholar 

  4. Mercadé, M.E., A. Manresa, M. Robert, M.J. Espuny, C. de Andrés, and J. Guinea, Olive Oil Mill Effluent (OOME). New Substrate for Biosurfactant Production, Bioresource Technol. 43:1 (1993).

    Article  Google Scholar 

  5. Schenk, T., I. Schuphan, and B. Schmidt, High-Performance Liquid Chromatographic Determination of the Rhamnolipids Produced by Pseudomonas aeruginosa, J. Chromatogr. A 693:7 (1994).

    Article  Google Scholar 

  6. Déziel, E., F. Lépine, D. Dennie, D. Boismenu, O. Mamer, and R. Villemur, Liquid Chromatography/Mass Spectrometry Analysis of Mixtures of Rhamnolipids Produced by Pseudomonas aeruginosa Strain 57RP Grown on Mannitol or Naphthalene, Biochim. Biophys. Acta 1440:244 (1999).

    Google Scholar 

  7. Mata-Sandoval, J., J. Karns, and A. Torrents, High-Performance Liquid Chromatography Method for the Characterization of Rhamnolipid Mixtures Produced by Pseudomonas aeruginosa UG2 on Corn Oil, J. Chromatogr. 864:211 (1999).

    Article  CAS  Google Scholar 

  8. Déziel, E., F. Lépine, S. Milot, and R. Villemur, Mass Spectrometry Monitoring of Rhamnolipids from a Growing Culture of Pseudomonas aeruginosa Strain 57RP, Biochim. Biophys. Acta 1485:145 (2000).

    Google Scholar 

  9. Lepine, F., E. Déziel, S. Milot, and R. Villemur, Liquid Chromatographic/Mass Spectrometric Detection of the 3-(3-Hydroxyalkanoyloxy) Alkanoic Acid Precursor of Rhamnolipids in Pseudomonas aeruginosa Cultures, J. Mass Spectrom. 37:41 (2002).

    Article  CAS  Google Scholar 

  10. Woods, G.L., and J.A. Washington, Antibacterial Susceptibility Test: Dilution and Disk Diffusion Methods, in Manual of Clinical Microbiology, 6th edn. edited by P.R. Murray, ASM Press, Washington, DC, 1995, p. 1327.

    Google Scholar 

  11. Espinel-Ingroff, A., and M. Pfaller, M., Antifungal Agents and Susceptibility Testing, in Manual of Clinical Microbiology, 6th edn., edited by P.R. Murray, pp. 1405, ASM Press, Washington, DC, 1995, p. 1405.

    Google Scholar 

  12. Guerra-Santos, L., O. Käppeli, and A. Fiechter, Pseudomonas aeruginosa Biosurfactant Production in Continuous Culture with Glucose as Carbon Source. Appl. Environ. Microbiol. 48:301 (1984).

    CAS  Google Scholar 

  13. Manresa, A., J. Bastida, M.E. Mercadé, M. Robert, C. de Andrés, M.J. Espuny, and J. Guinea, Kinetic Studies on Surfactant Production by Pseudomonas aeruginosa 44T1, J. Ind. Microbiol. 8:133 (1991).

    Article  CAS  Google Scholar 

  14. Desai, J., and I. Banat, Microbial Production of Surfactants and Their Commercial Potential, Microbiol. Mol. Biol. Rev. 61:47 (1997).

    CAS  Google Scholar 

  15. Maier, R., and G. Soberón-Chávez, Pseudomonas aeruginosa Rhamnolipids: Biosynthesis and Potential Applications, Appl. Microbiol. Biotechnol. 54:625 (2000).

    Article  CAS  Google Scholar 

  16. Mata-Sandoval, J., J. Karns, and A. Torrens, Effect of Nutritional and Environmental Conditions on the Production and Composition of Rhamnolipids by P. aeruginosa UG2, Microbiol. Res. 155:249 (2001).

    CAS  Google Scholar 

  17. Rosen, M., Relationship of Structure Properties in Surfactants: II. Efficiency in Surfaces or Interfacial Tension Reduction, J. Am. Oil Chem. Soc. 51:461 (1974).

    CAS  Google Scholar 

  18. Lang, S., and F. Wagner, Bioconversion of Oils and Sugars to glycolipids, in Biosurfactants: Production, Properties, and Applications, edited by N. Kosaric, Marcel Dekker, New York, Surfactant Science Series Vol. 48, 1993, p. 251.

    Google Scholar 

  19. Kitamoto, D., H. Yanagishita, T. Shinbo, T. Nakane, C. Kamisawa, and T. Nakahara, Surface Active Properties and Antimicrobial Activities of Mannosylerythritol Lipids as Biosurfactants Produced by Candida antarctica, J. Biotechnol. 29:91 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Manresa.

About this article

Cite this article

Haba, E., Abalos, A., Jáuregui, O. et al. Use of liquid chromatography-mass spectroscopy for studying the composition and properties of rhamnolipids produced by different strains of Pseudomonas aeruginosa . J Surfact Deterg 6, 155–161 (2003). https://doi.org/10.1007/s11743-003-0260-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-003-0260-7

Key Words

Navigation