Skip to main content
Log in

Formation, properties, and “ex situ” soil decontamination by vegetable oil-based microemulsions

  • Published:
Journal of Surfactants and Detergents

Abstract

We have investigated soil decontamination by vegetable oil-based fluids. Methyl esters of babassu oil (BME) and the unsaturated fraction of palm oil (UPME) were prepared by transesterification of precursor oils. Phase diagrams of each fatty ester/water/nonionic surfactant (Synperonic 91/4) were studied as a function of system composition and temperature. Measurements of solution rheology, quasi-elastic light scattering, and interfacial tension were employed to demonstrate that the single phases obtained are either bicontinuous or water-in-oil microemulsions (μE). Both types were used in decontamination of three different soils, impregnated with polycyclic aromatic hydrocarbons. As decontaminators, BME- and UPME-based μE (at 37.5, and 42.5°C, respectively) are more efficient than hot toluene. This is attributed to desorption and subsequent solubilization of contaminants by the μE. The viability of this decontamination scheme is further supported by material balance. Decontamination has increased soil bio-availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BME:

babassu oil methyl esters

CEC:

cation exchange capacity

CME:

coconut oil methyl esters

EO:

oxyethylene

IFT:

interfacial tension

μE:

microemulsion

O:

oil

PAH:

polycyclic aromatic hydrocarbons

PIT:

phase inversion temperature

QELS:

quasi-elastic light scattering

S:

surfactant

SPME:

methyl esters of the saturated fraction of palm oil

θ:

contact angle

UPME:

methyl esters of the unsaturated fraction of palm oil

UV-vis:

ultraviolet-visible

W:

water

References

  1. Hamby, D.M., Site Remediation Technique Supporting Environmental Restoration Activities—A Review, Sci. Total Environ. 191:203 (1996).

    Article  CAS  Google Scholar 

  2. Darian, S.T., and S.P. Weinberg, WO Patent 90/06795 (1990).

  3. Lee, J.F., M.M. Mortland, S.A. Boyd, and C.T. Chiou, Shape-Selective Adsorption of Aromatic Molecules from Water by Tetramethylammonium Smectite, J. Chem. Soc., Faraday Trans. 1 85:2953 (1989).

    Article  CAS  Google Scholar 

  4. Hesketh, N., M.N. Jones, and E. Tipping, The Interaction of Some Pesticides and Herbicides with Humic Substances, Anal. Chim. Acta 327: 191 (1996).

    Article  CAS  Google Scholar 

  5. Delle Site, A., Factors Affecting Sorption of Organic Compounds in Natural Sorbent/Water Systems and Sorption Coefficients for Selected Pollutants. A Review, J. Phys. Chem. Ref. Data 30:187 (2001).

    Article  CAS  Google Scholar 

  6. Bourbonais, K.A., G.C. Compeau, and L.K. MacClellan, Evaluating Effectiveness of in situ Soil Flushing with Surfactants, in Surfactant-Enhanced Subsurface Remediation: Emerging Technologies, edited by D.A. Sabatini, R.C. Knox, and J.H. Harwell, ACS Symposium Series, American Chemical Society, Washington, DC, 1995, Vol. 594, p. 161.

    Google Scholar 

  7. Bonkhoff, K., M.J. Schwuger, and G. Subklew, Use of Microemulsions for the Extraction of Contaminated Solids, in Industrial Applications of Microemulsions, edited by C. Solans and H. Kunieda, Surfactant Science Series, Marcel Dekker, New York, 1997, Vol. 66, p. 355.

    Google Scholar 

  8. Clemens, W., F.-H. Haegel, M.J. Schwuger, C. Soeder, K. Stickdorn, and L. Webb, WO Patent 94/04289 (1994).

  9. Mönig, K., F.-H. Haegel, and M.J. Schwuger, Microemulsions with Plant Oils, Systematic Investigations on Preparation and Temperature-Induced Splitting, Tenside Surfact. Deterg. 33:228 (1996).

    Google Scholar 

  10. Mönig, K., W. Clemens, F.-H. Haegel, and M.J. Schwuger, Application of Microemulsions in Soil Remediation, in Micelles, Microemulsions, and Monolayers, edited by D.O. Shah, Marcel Dekker, New York, 1998, p. 215.

    Google Scholar 

  11. Bragato, M., G. Subklew, M.J. Schwuger, and O.A. El Seoud, Vegetable Oil-Based Microemulsions: Formation, Properties and Application for “ex-situ” Soil Decontamination, Colloid Polym. Sci. 280:973 (2002).

    Article  CAS  Google Scholar 

  12. Perrin, D.D., and W.L.F. Armarego, Purification of Laboratory Chemicals, Pergamon, New York, 1988.

    Google Scholar 

  13. Markley, K.S., Fatty Acids: Their Chemistry, Properties, Production and Uses, 2nd edn., Interscience, New York, 1961, part 2.

    Google Scholar 

  14. Ast, H.J., Inadvertent Isomerization of Polyunsaturated Acids During Ester Preparation. Anal. Chem. 35:1539 (1963).

    Article  CAS  Google Scholar 

  15. Official Methods and Recommended Practices of the American Oil Chemists' Society, 4th edn., American Oil Chemists' Society, Champaign, 1990.

  16. Kahlweit, M., R. Strey, and P. Firman, Search For Tricritical Points in Ternary Systems—Water-Oil Nonionic Amphiphile, J. Phys. Chem. 90:671 (1986).

    Article  CAS  Google Scholar 

  17. Kahlweit, M., R. Strey, D. Haase, and P. Firman, Properties of the 3-Phase Bodies in H2O-Oil-Nonionic Amphiphile Mixtures, Langmuir 4:785 (1988).

    Article  CAS  Google Scholar 

  18. Koppel, D.E., Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy—Method of Cumulants, J. Chem. Phys. 57:4814 (1972).

    Article  CAS  Google Scholar 

  19. Evans, D.F., and H. Wennerström, The Colloidal Domain, VCH, New York, 1994, p. 451.

    Google Scholar 

  20. Kutschmann, E.-M., G.H. Findenegg, D. Nickel, and W.V. Rybinski, Interfacial Tension of Alkylglucosides in Different APG/Oil/Water Systems, Colloid Polym. Sci. 273:565 (1995).

    Article  CAS  Google Scholar 

  21. Adamson, A., Physical Chemistry of Surfaces, 5th edn., John Wiley & Sons, New York, 1990, p. 389.

    Google Scholar 

  22. Siqueira-Petri, D.F., G. Wenz, P. Schunk, and T. Schimmel, An Improved Method for the Assembly of Amino-Terminated Monolayers on SiO2 and the Vapor Deposition of Gold Layers, Langmuir 15:4520 (1999).

    Article  Google Scholar 

  23. Brunauer, S., P.H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc. 60:309 (1938).

    Article  CAS  Google Scholar 

  24. Rytwo, G., C. Serban, S. Nir, and L. Margulies, Use of Methylene-Blue and Crystal Violet for Determination of Exchangeable Cations in Montmorillonite, Clay Miner. 39:551 (1991).

    Article  CAS  Google Scholar 

  25. FAO (Food and Agriculture Organization of the United Nations), FAOSTAT Data Bank, http://apps.fao.org (accessed 2002).

  26. Brazilian Institute of Geography and Statistics, IBGE, SIDRA Data-bank, www.ibge.gov.br (accessed 2002).

  27. Ninham, B.W., S.J. Chen, and D.F. Evans, Role of Oils and Other Factors in Microemulsion Design, J. Phys. Chem. 88:5855 (1984).

    Article  CAS  Google Scholar 

  28. Claesson, P.M., R. Kjellander, P. Stenius, and H.K. Christenson, J. Chem. Soc., Faraday Trans. 1 82:2735 (1986).

    Article  CAS  Google Scholar 

  29. Golubovic, L., and T.C. Lubensky, Thermal Fluctuations and Phase-Equilibrium in Microemulsions, Phys. Rev. A 41:4343 (1990).

    Article  CAS  Google Scholar 

  30. Schubert, K.-V., and E.W. Kaler, Nonionic Microemulsions, Ber. Bunsen Ges. Phys. Chem. 100:190 (1996).

    CAS  Google Scholar 

  31. Kunieda, H., and M. Yamagata, Mixing of Nonionic Surfactants at Water-Oil Interfaces in Microemulsions, Langmuir 9:3345 (1993).

    Article  CAS  Google Scholar 

  32. Martino, A., M. Schick, and E.W. Kaler, A 4-Component Lattice Model for Nonaqueous Microemulsions Made with Nonionic Surfactants, J. Chem. Phys. 93:8228 (1990).

    Article  CAS  Google Scholar 

  33. Stubenrauch, C., S.K. Mehta, B. Paeplow, and G.H. Findenegg, Microemulsion Systems Based on a C8/10 Alkyl Polyglucoside: A Reentrant Phase Inversion Induced by Alcohols? Progr. Colloid Polym. Sci. 111:92 (1998).

    Article  CAS  Google Scholar 

  34. Yoshino, A., N. Sugiyama, H. Okabayashi, K. Taga, T. Yoshida, and O. Kamo, Chirality Effects on Proton and Carbon-13 NMR Chemical Shifts for Aerosol OT in Reverse Micelles Assisted by Line Shape Simulations and Two-Dimensional Pulse Techniques, Colloid Surf. 67:67 (1992).

    Article  CAS  Google Scholar 

  35. Fennell Evans, D., D.J. Mitchell, and B.W. Ninham, Oil, Water, and Surfactant—Properties and Conjectured Structure of Simple Microemulsions, J. Phys. Chem. 90:2817 (1986).

    Article  Google Scholar 

  36. De Gennes, P.G., and C. Taupin, Micro-emulsions and the Flexibility of Oil-Water Interfaces, J. Phys. Chem. 86:2294 (1982).

    Article  Google Scholar 

  37. Tabony, J., Formation of Cubic Structures in Microemulsions Containing Equal Volumes of Oil and Water, Nature 319:400 (1986).

    Article  CAS  Google Scholar 

  38. Tabony, J., Occurrence of Liquid-Crystalline Mesophases in Microemulsion Dispersions, Nature 320:338 (1986).

    Article  CAS  Google Scholar 

  39. Kumar, C., and D. Balasubramamian, Spectroscopic Studies on the Microemulsions and Lamellar Phases of the System Triton X-100: Hexanol: Water in Cyclohexane, J. Colloid Interface Sci. 69:271 (1979).

    Article  CAS  Google Scholar 

  40. Chang, N.J., and E.W. Kaler, Quasi-Elastic Light Scattering Study of Five-Component Microemulsions, Langmuir 2:184 (1986).

    Article  CAS  Google Scholar 

  41. Kahlweit, M., R. Strey, D. Haase, H. Kunieda, T. Schmeling, B. Faulhaber, M. Borkovec, H.F. Eicke, G. Busse, F. Eggers, Th. Funck, H. Richmann, L. Magid, O. Söderman, P. Stilbs, J. Winkler, A. Dittrich, and W. Jahn, How to Study Microemulsions, J. Colloid Interface Sci. 18:436 (1987).

    Article  Google Scholar 

  42. Talmon, Y., and S. Prager, Statistical Thermodynamics of Phase-Equilibria in Microemulsions, J. Chem. Phys. 69:2984 (1978).

    Article  CAS  Google Scholar 

  43. Olsson, U., K. Shinoda, and B. Lindman, Change of the Structure of Microemulsions with Hydrophile-Lipophile Balance of Nonionic Surfacant as Revealed by NMR Self-Diffusion Studies, J. Phys. Chem. 90:4083 (1986).

    Article  CAS  Google Scholar 

  44. Ruckenstein, E., Origin of Thermodynamic Stability of Emulsions, Chem. Phys. Lett. 57:517 (1978).

    Article  CAS  Google Scholar 

  45. Testard, F., and Th. Zemb, Excess of Solubilization and Curvature in Nonionic Microemulsions, J. Colloid Interface Sci. 219:11 (1999).

    Article  CAS  Google Scholar 

  46. Langevin, D., Microemulsions, Accounts Chem. Res. 21:255 (1988).

    Article  CAS  Google Scholar 

  47. Zana, R., Aqueous Surfactant-Alcohol Systems—A Review, Adv. Colloid Interface Sci. 57:1 (1995).

    Article  CAS  Google Scholar 

  48. Reed, R.L., and R.N. Healy, Contact Angles for Equilibrated Microemulsion Systems, Soc. Petrol. Eng. J. 24:342 (1984).

    CAS  Google Scholar 

  49. Johnson, C.T., Sorption of Organic Compounds on Clay Minerals: A Surface Functional Group Approach, in Organic Pollutants in the Environment, edited by B. Shawney, CMS Workshop Lectures, The Clay Minerals Society, Boulder, CO, 1996, Vol. 8, p. 1.

  50. Rao, P.S.C., L.S. Lee, and A.L. Wood, Solubility, Sorption, and Transport of Hydrophobic Organic Chemicals in Complex Mixtures, U.S. Environmental Protection Agency Document EPA/600/M-91/009, Ada, OK, 1991.

  51. Liu, Z., D.A. Edwards, and R.G. Luthy, Sorption of Nonionic Surfactants onto Soil, Water Res. 26:1337 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar A. El Seoud.

About this article

Cite this article

Bragato, M., El Seoud, O.A. Formation, properties, and “ex situ” soil decontamination by vegetable oil-based microemulsions. J Surfact Deterg 6, 143–150 (2003). https://doi.org/10.1007/s11743-003-0258-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-003-0258-1

Key words

Navigation