Skip to main content
Log in

Synthesis and characterization of maltose fatty acid monoesters as biosurfactants

  • Published:
Journal of Surfactants and Detergents

Abstract

Maltose long-chain fatty acid esters (MFAE), esterified at the 6 and 6′ position, were synthesized with stearic, palmitic, myristic, and oleic groups. Synthesis yields were 15–20% based on initial maltose present, and structural confirmation was obtained using plasma desorption mass spectrometry and nuclear magnetic resonance spectroscopy. These surfactants have surface tensions in the range of 34–36 dyn/cm at their critical micelle concentrations (CMC) of approximately 10−5–10−6 mol/L. The increased chain lengths have a marked effect, reducing CMC values for MFAE by approximately three orders of magnitude over similar carbohydrate-based dodecyl chain sources. Within chain lengths between 14 and 18 carbons, the rate of change in CMC is significant and decreases with increasing chain length for MFAE. The melting points of MFAE are approximately 40°C, and the heat capacities range from 1.6 to 1.9 J/g·K. These numbers are comparable to those of sucrose esters, indicating their applicability in similar uses. However, because MFAE, unlike sucrose, possess an anomeric carbohydrate carbon position, these surfactants maintain their reducing nature and are susceptible to further derivatization. They are also synthesized from renewable, economical carbohydrates and lipids and may provide an excellent alternative to pertrochemical-derived products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whistler, R.L., and J.N. BeMiller, Monosaccharides, in Carbohydrate Chemistry for Food Scientists, edited by R.L. Whistler and J.N. BeMiller, Eagan Press, St. Paul, 1997, p. 1.

    Google Scholar 

  2. Egan P.A., Surfactants from Biomass, CHEMTECH (December): 758 (1989).

    Google Scholar 

  3. Hass, H.B., Early History of Sucrose Esters, in Sugar Esters, edited by H.B. Hass and The Sugar Research Foundation, Noyes Development Corp., Park Ridge, NJ, 1968, p. 1.

    Google Scholar 

  4. Khan, R., The Chemistry of Sucrose, Adv. Carbohydr. Chem. Biochem. 33:268 (1976).

    Article  Google Scholar 

  5. Allen, D.K. and B.Y. Tao, Carbohydrate-Alkyl Ester Derivatives as Biosurfactants, J. Surfact. Deterg. 2:383 (1999).

    CAS  Google Scholar 

  6. Lehrfeld, A., Separation of Some Perbenzoylated Carbohydrates by High Performance Liquid Chromatography, J. Chromatogr. 120:141 (1976).

    Article  CAS  Google Scholar 

  7. Scholnick, F., M.K. Sucharski, and W.M. Linfield, Lactose-Derived Surfactants (I) Fatty Esters of Lactose, J. Am. Oil Chem. soc. 51:8 (1974).

    CAS  Google Scholar 

  8. Nishikawa, Y., K. Yoshimoto, M. Nishijima, F. Fukuoka, and T. Ikekawa, Chemical and Biochemical Studies on Carbohydrate Esters IX. Antitumor Effects of Selectively Fatty Acylated Products of Maltose, Chem. Pharm. Bull. 29:505 (1981).

    CAS  Google Scholar 

  9. Wing, R.E., and J.N. BeMiller, Qualitative Thin-Layer Chromatography, in Methods in Carbohydrate Chemistry, edited by R.L. Whistler and J.N. BeMiller, Academic Press, New York, 1972, Vol. 6, p. 42.

    Google Scholar 

  10. Whistler, R.L., L.W. Doner, and M. Kosik, Other Esters, in Methods in Carbohydrate Chemistry, edited by R.L. Whistler and J.N. BeMiller, Academic Press, New York, 1972, Vol. 6, p. 411

    Google Scholar 

  11. Sarney, D.B., M.J. Barnard, M. Virto, and E.N. Vulfson, Enzymatic Synthesis of Sorbitan Esters Using a Low-Boiling-Point Azeotrope as a Reaction Solvent, Biotechnol. Bioeng. 54:351 (1997).

    Article  CAS  Google Scholar 

  12. Dische, Z., Color Reactions Based on the Reducing Properties of Sugars, in Methods in Carbohydrate Chemistry, edited by R.L. Whistler and W.L. Wolfrom, Academic Press, New York, 1962, Vol. 1, p. 513.

    Google Scholar 

  13. Padday J.F., and D.R. Russell, The Measurement of the Surface Tension of Pure Liquids and Solutions, J. Colloid Sci. 15:503 (1960).

    Article  CAS  Google Scholar 

  14. Furlong, D.N., P.A. Freeman, I.M. Metcalfe, and L.R. White, Wall Effects in DuNouy Ring Tensiometry, J. Chem. Soc., Faraday Trans. I, 79:1701 (1983).

    Article  CAS  Google Scholar 

  15. Rosen, M.J., Purification of Surfactants for Studies of Their Fundamental Surface Properties, J. Colloid. Interface Sci. 79:587 (1981).

    Article  CAS  Google Scholar 

  16. Mankowich A.M., The Energetics of Surfactant Adsorption at the Air-Water Interface. J. Am. Oil Chem. Soc. 42:615 (1966).

    Google Scholar 

  17. Griffin, W.C., Classification of Surface Active Agents by “HLB,” J. Soc. Cosmet. Chem. 1:311 (1949).

    Google Scholar 

  18. American Standard for Testing and Materials E 1269-95, Annual Book of ASTM Standards. 14.02:787 (1995).

    Google Scholar 

  19. Allen, D.K., Development of Maltose Fatty Acid Esters as Biosurfactants, M.S. Thesis, Purdue University, West Lafayette, Indiana, 1999, 169 pp.

    Google Scholar 

  20. Sadtler Research Laboratories, Inc., Nuclear Magnetic Resonance Spectra, Sadtler Research Laboratories, Philadelphia, 1978.

    Google Scholar 

  21. Bollenback, G.N., and F.W. Parrish, Selective Esterification of Methyl α-d-Glucopyranoside, Carbohydr. Res. 17:431 (1971).

    Article  CAS  Google Scholar 

  22. Whistler, R.L., and H.J. Roberts, Distribution of Formyl Groups in Amylose Monoformate, J. Am. Chem. Soc. 81:4427 (1959).

    Article  CAS  Google Scholar 

  23. Lemieux, R.U., and A.G. McInnes, The Composition of the Sucrose Monomyristate Prepared by Transesterification, Can. J. Chem. 40:2394 (1962).

    Article  CAS  Google Scholar 

  24. Plusquellec, D., and K. Baczko, Sugar Chemistry Without Protecting Groups: A Novel Regioselective Synthesis of 6-O-Acyl-d-glucopyranoses and Methyl-6-O-α-d-glucopyranosides, Tetrahedron Lett. 28:3809 (1987).

    Article  CAS  Google Scholar 

  25. Griffin, W.C., Calculation of HLB Values of Non-ionic Surfactants, J. Soc. Cosmet. Chem. 5:249 (1954).

    Google Scholar 

  26. Wachs, Von W., and S. Hayano, Uber die kritische Micellkonzentration (CMC) von Fettsauremonoestern der Saccharose und ihre Beziehung zum HLB-Wert, Kolloid Z. Z. Polym. 181:139 (1961).

    Article  Google Scholar 

  27. Soderberg, I., C.J. Drummond, D.N. Furlong, S. Godkin, and B. Matthews, Non-ionic Sugar-based Surfactants: Self-Assembly and Air/Water Interfacial Activity, Colloids Surf. A: Physicochem. Eng. Aspects. 102:91 (1995).

    Article  Google Scholar 

  28. Drummond, C.J., G.G. Warr, and F. Grieser, Surface Properties and Micellar Interfacial Microenvironment of n-Dodecyl β-d-maltoside, J. Phys. Chem. 89:2103 (1985).

    Article  CAS  Google Scholar 

  29. Shinoda, K., T. Yamaguchi, and R. Hori, The Surface Tension and the Critical Micelle Concentration in Aqueous Solution of β-d-Alkyl Glucosides and Their Mixtures, Bull. Chem. Soc. Jpn. 34:237 (1961).

    Article  CAS  Google Scholar 

  30. Osipow, L.I., F.D. Snell, and J. Hickson, Surface Chemistry of Alkyl Esters of Sucrose, in Proceedings of the Second International Congress of Surface Activity, Vol. 1, Gas/Liquid and Liquid/Liquid Interface, edited by L.I. Osipow, F.D. Snell, and J. Hickson, Butterworths, London, 1957, p. 56.

    Google Scholar 

  31. Steigman, J., and N. Shane, Micelle Formation in Concentrated Sulfuric Acid as Solvent, J. Phys. Chem. 69:968 (1965).

    Article  CAS  Google Scholar 

  32. Evans, H.C., Alkyl Sulphates. Part I. Critical Micelle Concentrations of the Sodium Salts, J. Chem. Soc. 579 (1956).

  33. Matsumura, S., K. Ismai, S. Yoshikawa, D. Dawada, and T. Uchiburi, Surface Activities, Biodegradability, and Antimicrobial Properties of n-Alkyl Glucosides, Mannosides, and Galactosides, J. Am. Oil Chem. Soc. 67:996 (1990).

    CAS  Google Scholar 

  34. Beckett, A.H., and R.J. Woodward, Surface-Active Betaines: N-Alkyl-N,N-dimethylglycines and Their Critical Micelle Concentrations. J. Pharm. Pharmacol. 15:422 (1963).

    CAS  Google Scholar 

  35. Molyneux, P., C.T. Rhodes, and J. Swarbrick, Thermodynamics of Micellization of N-Alkyl Betaines, Trans. Faraday Soc. 61:1043 (1965).

    Article  CAS  Google Scholar 

  36. Mitsubishi-Kagaku Foods Corporation, Physical Properties of Sugar Esters, http://www.mfc.co.jp (accessed June 1998).

  37. Adam, N.K., The Physics and Chemistry of Surfaces, edited by N.K. Adam, Oxford University Press, London, 1941, p. 363.

    Google Scholar 

  38. Langmuir, I., The Constitution and Fundamental Properties of Solids and Liquids. II. Liquids, J. Am. Chem. Soc. 39:1848 (1917).

    Article  CAS  Google Scholar 

  39. Klevens, H.B., Structure and Aggregation in Dilute Solutions of Surface Active Agents, J. Am. Oil Chem. Soc. 30:74 (1953).

    CAS  Google Scholar 

  40. Benson, S.W. Thermochemical Kinetics, Wiley, New York, 1968, p. 18.

    Google Scholar 

  41. Rihani, D.N., and L.K. Doraiswamy, Estimation of Heat Capacity of Organic Compounds from Group Contributions, Ind. Eng. Chem. Fundam. 4:17 (1965).

    Article  CAS  Google Scholar 

  42. Roos, Y., Melting and Glass Transitions of Low Molecular Weight Carbohydrates, Carbohydr. Res. 238:39 (1993).

    Article  CAS  Google Scholar 

  43. Briggner, L.F., and I. Wadso, Heat Capacities of Maltose, Maltotriose, Maltotetrose and α-, β-, and γ-Cyclodextrin in the Solid State and in Dilute Aqueous Solution, J. Chem. Thermodyn. 22:1067 (1990).

    Article  CAS  Google Scholar 

  44. Kawaizumi, F., N. Nishio, H. Nomura, and Y. Miyahara, Heat-Capacity Measurements of Aqueous Solutions of Mono-, Di-, and Trisaccharides Using an Isoperibol Twin Calorimeter, J. Chem. Thermodyn. 13:89 (1981).

    Article  CAS  Google Scholar 

  45. Larsson, K., Solid State Behaviour, in Lipids—Molecular Organization, Physical Functions and Technical Applications, edited by K. Larsson, Oily Press, Dundee, Scotland, 1994, p. 27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Y. Tao.

About this article

Cite this article

Allen, D.K., Tao, B.Y. Synthesis and characterization of maltose fatty acid monoesters as biosurfactants. J Surfact Deterg 5, 245–255 (2002). https://doi.org/10.1007/s11743-002-0224-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-002-0224-y

Key Words

Navigation