Journal of Surfactants and Detergents

, Volume 3, Issue 1, pp 81–91 | Cite as

Cleavable surfactants

  • Per-Erik Hellberg
  • Karin Bergström
  • Krister HolmbergEmail author


Cleavable surfactants are of interest for several reasons. Above all, the development of surfactants with weak bonds deliberately built into the structure is driven by the need for improved biodegradability of amphiphiles. The breakdown may be catalyzed by enzymes, and biodegradation would be the normal mechanism in sewage plants. Alternatively, the surfactant may degrade by chemical means, e.g., induced by acid, alkali, ultraviolet (UV) light, heat, or ozone. Acid- and alkali-labile surfactants have attracted particular attention, and there is often a compromise between required stability at one stage and ease of breakdown at a subsequent stage. The paper reviews the main routes used to prepare cleavable surfactants and points out advantages and disadvantages of the different approaches. Emphasis is placed on the development during recent years. Cyclic and acyclic acetals, ketals, and ortho esters are the most important types of bonds for the preparation of acid-labile surfactants, whereas alkali-labile amphiphiles usually are based on ester bonds. The ester bond approach has been particularly important for cationic surfactants, and so-called ester quats have rapidly taken a large share of the traditional market for quats. Betaine esters constitute a special class of ester with very pronounced pH dependence. UV-labile surfactants based, for instance, on an azo bond, offer promise for the future.

Key Words

Acetal betaine ester choline ester cleavable surfactant ester quat isethionate ester ketal labile surfactant ortho ester UV degradation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jaeger, D.A., Cleavable Surfactants, Supramol. Chem. 5:27 (1995).Google Scholar
  2. 2.
    Bieniecki, A., K.A. Wilk, and J. Gapinski, Micellar Aggregation Behavior at Low Ionic Strength of Cyclic Acetal-Type Cationic Surfactants Containing the 1,3-Dioxolane Moiety, J. Phys. Chem. B 101:871 (1997).CrossRefGoogle Scholar
  3. 3.
    Sokolowski, A., A. Bieniecki, K.A. Wilk, and B. Burczyk, Surface Activity and Micelle Formation of Chemodegradable Cationic Surfactants Containing the 1,3-Dioxolane Moiety, Colloids Surf. A 98:73 (1995).CrossRefGoogle Scholar
  4. 4.
    Wang, G.-W., X.-Y. Yuan, Y.-C. Liu, X.-G., Lei, and Q.-X. Guo, Synthesis and Characterization of Cleavable Cationic Surfactants with a 1,3-Dioxane Ring, J. Am. Oil Chem. Soc. 72:83 (1995).Google Scholar
  5. 5.
    Wang, G.-W., Y.-C. Liu, X.-Y. Yuan, X.-G. Lei, and Q-X. Guo, Preparation, Properties and Applications of Vesicle-Forming Cleavable Surfactants with a 1,3-Dioxane Ring, J. Colloid Interface Sci. 173:49 (1995).CrossRefGoogle Scholar
  6. 6.
    Sokolowski, A., A. Piasecki, and B. Burczyk, Synthesis and Surface Properties of Chemodegradable Anionic Surfactants: Sodium Salts of Sulfated 2-n-Alkyl-5-hydroxymethyl-5-methyl-1,3-Dioxane. J. Am. Oil Chem. Soc. 69:633 (1992)Google Scholar
  7. 7.
    Wang, G.-W., X.-Y. Yuan, Y.-C. Liu, and X.-G. Lei, Preparation and Properties of Sulfonate Salt-Type Cleavable Surfactants with a 1,3-Dioxane Ring, 71:727 (1994).Google Scholar
  8. 8.
    Wilk, K.A., A. Bieniecki, B. Burczyk, and A. Sokolowski, Synthesis and Hydrolysis of Chemodegradable Cationic Surfactants Containing the 1,3-Dioxolane Moiety, 71:81 (1994).Google Scholar
  9. 9.
    Galante, D.C., R.C. Hoy, A.F. Joseph, S.W. King, C.A. Smith, and C.M. Wizda, European Patent Application, EP 0 742 178 (1996).Google Scholar
  10. 10.
    Hoy, R.C., and A.F. Joseph, Glycerine-Based Splittable Surfactants, INFORM 7:428 (1996).Google Scholar
  11. 11.
    Piasecki, A., Hydrolysis of 2-(-2-(ω-hydroxyalkoxy)alkyl)-Substituted 1,3-Dioxolanes and 1,3-Dioxanes in Aqueous Solution of Hydrochloric Acid, J. Prakt. Chem. 327:731 (1985).CrossRefGoogle Scholar
  12. 12.
    Bieniecki, A., and K.A. Wilk, Oil-in-Water Microemulsions Based on Chemodegradable Surfactants as Reaction Media, J. Phys. Org. Chem. 8:71 (1995).CrossRefGoogle Scholar
  13. 13.
    von Rybinski, W., Alkyl Polyglycosides, Curr. Opin. Colloid Interface Sci. 1:572 (1996).CrossRefGoogle Scholar
  14. 14.
    von Rybinski, W., Alkyl Polyglycosides, in Novel Surfactants, edited by K. Holmberg, Marcel Dekker, New York, 1998, p. 31.Google Scholar
  15. 15.
    Balzer, D., On the Properties of Alkyl Polyglycosides, Tenside Surfactants Deterg. 33:102 (1996).Google Scholar
  16. 16.
    Burczyk, B., and A. Sokolowski, Relations Between Chemical Structure and Surface Activity. I. Synthesis and Properties of Aqueous Solutions of Acetals Formed from Aliphatic Aldehydes and Monoalkyl Ethers of Ethylene Glycols, 15:68 (1978).Google Scholar
  17. 17.
    Yue, C., J.M. Harris, P.-E. Hellberg, and K. Bergström, Synthesis and Characterization of Cleavable Surfactants Derived from Poly(ethylene glycol) Monomethyl Ether, J. Am. Oil Chem. Soc. 73:841 (1996).CrossRefGoogle Scholar
  18. 18.
    Kuwamura, T., and H. Takahashi, Structural Effects on the Properties of Nonionic Surfactants. I. The Synthesis and Some Surface Activities of Acetal Type Homogeneous Nonionics, Bull. Chem. Soc. Japan 45:617 (1972).CrossRefGoogle Scholar
  19. 19.
    Sokołowski, A., and B. Burczyk, Acetals and Ethers. Part V. Kinetics of Hydrolysis of Acetals Formed from Aliphatic Aldehydes and Monoalkyl Ethers of Ethylene Glycols, Pol. J. Chem. 53:1995 (1979).Google Scholar
  20. 20.
    Ono, D., A. Masuyama, T. Tanaka, and M. Okahara, Cleavable Surfactants of the Acetal Type, Tenside Surfactants Deterg. 29:412 (1992).Google Scholar
  21. 21.
    Ono, D., A. Masuyama, and M. Okahara, Preparation of New Acetal Type Cleavable Surfactants from Epichlorohydrin, J. Org. Chem. 55:4461 (1990).CrossRefGoogle Scholar
  22. 22.
    Felix, M., PCT International Patent Application WO 96/00253 (1996).Google Scholar
  23. 23.
    Langdon, W.K., U.S. Patent 3,931,337 (1976).Google Scholar
  24. 24.
    Yamamura, S., M. Nakamura, K. Kasai, H. Sato, and T. Takeda, Synthesis and Properties of Destructible Anionic Surfactants with a 1,3-Dioxolane Ring and Their Use as Emulsifier for Emulsion Polymerization, J. Jpn. Oil Chem. Soc. 40:1002 (1991).Google Scholar
  25. 25.
    Mercia, S.G., C.E. Banceu, W. Jedral, J. Lipkowski, and N.J. Bunce, Electroreduction of Hexachlorobenzene in Micellar Aqueous Solutions of Triton-SP 175, Environ. Sci. Technol. 32:1509 (1998).CrossRefGoogle Scholar
  26. 26.
    Masuyama, A., D. Ono, A. Yamamoto, T. Kida, Y. Nakatsuji, and T. Takeda, Unique Betaine Types of Surfactants Bearing a 1,3-Dioxolane Ring, J. Jpn. Oil Chem. Soc. 44:446 (1995).Google Scholar
  27. 27.
    Ono, D., S. Yamamura, M. Nakamura, T. Takeda, A. Masuyama, and Y. Nakatsuji, Biodegradation of Different Carboxylate Types of Cleavable Surfactants Bearing a 1,3-Dioxolane Ring, J. Am. Oil Chem. Soc. 72:853 (1995).Google Scholar
  28. 28.
    Ono, D., A. Masuyama, Y. Nakatsuji, M. Okahara, S. Yamamura, and T. Takeda, Preparation, Surface-Active Properties and Acid Decomposition Profiles of a New “Soap” Bearing a 1,3-Dioxolane Ring, 70:29 (1993).Google Scholar
  29. 29.
    Song, B.-K., and K. Wolf, Cleavable Surfactants for Dyeing of Wool, DWI Rep. 114:549 (1995).Google Scholar
  30. 30.
    Kida, T., N. Morishima, A. Masuyama, and Y. Nakatsuji, New Cleavable Surfactants Derived from Glucono-1,5-lactone, J. Am. Oil Chem. Soc. 71:705 (1994).Google Scholar
  31. 31.
    Jaeger, D.A., M.D. Ward, and A.K. Dutta, Preparation and Characterization of Cleavable Surfactants Based on a Silicon-Oxygen Bond, J. Org. Chem. 53:1577 (1988).CrossRefGoogle Scholar
  32. 32.
    Jaeger, D.A., Y.M. Sayed, and A.K. Dutta, Second Generation Single-Chain Cleavable Surfactants, Tetrahedron Lett. 31:449 (1990).CrossRefGoogle Scholar
  33. 33.
    Jaeger, D.A., and Y.M. Sayed, Synthesis and Characterization of Single-Chain Second Generation Cleavable Surfactants, J. Org. Chem. 58:2618 (1993).Google Scholar
  34. 34.
    Wang, J.Y., R.A. Uphaus, J. Wang, and D.A. Jaeger, Monolayer Study of Cleavable Phospholipids, Thin Solid Films 242:277 (1994).CrossRefGoogle Scholar
  35. 35.
    Jaeger, D.A., and S.G.G. Russell, Second Generation Double-Chain Cleavable Surfactants, Tetrahedron Lett. 34:6985 (1993).CrossRefGoogle Scholar
  36. 36.
    Jaeger, D.A., S.G.G. Russell, and H. Shinozaki, Double-Chain Surfactants with Two Quaternary Ammonium Head Groups, J. Org. Chem. 59:7544 (1994).CrossRefGoogle Scholar
  37. 37.
    Bergström, K., and P.-E. Hellberg, PCT International Patent Application PCT/SE97/00987 (1997).Google Scholar
  38. 38.
    Bergström, K., and P.-E. Hellberg, PCT International Patent WO 98/00452 (1998).Google Scholar
  39. 39.
    Cordes, E.H., and H.G. Bull, Mechanism and Catalysis for Hydrolysis of Acetals, Ketals, and Ortho Esters, Chem. Rev. 74:581 (1974).CrossRefGoogle Scholar
  40. 40.
    Potts, R.A., and R.A. Schaller, Kinetics of the Hydrolysis of Orthoesters: A General Acid-Catalyzed Reaction, J. Chem. Ed. 70:421 (1993).CrossRefGoogle Scholar
  41. 41.
    Bergh, M., L.P. Shao, K. Magnusson, E. Gäfvert, J.L.G. Nilsson, and A. Karlberg, Atmospheric Oxidation of Polyoxyethylene Alcohols. Identification of Ethoxylated Formates as Oxidation Products and Study of Their Contact Allergenic Activity, J. Pharm. Sci. 88:483 (1999).CrossRefGoogle Scholar
  42. 42.
    Kruger, G., D. Boltersdorf, and H. Lewandowski, Esterquats, in Novel Surfactants, edited by K. Holmberg, Marcel Dekker, New York, 1998, p. 115.Google Scholar
  43. 43.
    Waters, J., H.H. Kleiser, M.J. How, M.D. Barratt, R.R. Birch, R.J. Fletcher, S.D. Haigh, S.G. Hales, S.J. Marshall, and T.C. Pestell, A New Rinse Conditioner Active with Improved Environmental Properties, Tenside Surfactants Deterg. 28:460 (1991).Google Scholar
  44. 44.
    Chelminska-Bertilsson, M., A. Edebo, R.A. Thompson, and L. Edebo, Enzymatic Hydrolysis of Long-Chain Alkanoylcholines in Rat Intestinal Loops, Scand. J. Gastroenterol. 30:670 (1995).Google Scholar
  45. 45.
    Ahlström, B., M. Chelminska-Bertilsson, R.A. Thompson, and L. Edebo, Long-Chain Alkanoylcholines, A New Category of Soft Antimicrobial Agents That Are Enzymatically Degradable, Antimicrob. Agents Chemother. 39:50 (1995).Google Scholar
  46. 46.
    Robson Wright, M., Arrhenius Parameters for the Acid Hydrolysis of Esters in Aqueous Solution, J. Chem. Soc. B.:707 (1969).Google Scholar
  47. 47.
    Bell, R.P., and F.J. Lindars, Kinetics of the Acid and Alkaline Hydrolysis of Ethoxycarbonyl-Ethyltriethylammonium Chloride, J. Chem. Soc.: 1087 (1954).Google Scholar
  48. 48.
    Lindstedt, M., S. Allenmark, R.A. Thompson, and L. Edebo, Antimicrobial Activity of Betaine Esters, Quaternary Ammonium Amphiphiles Which Spontaneously Hydrolyze into Nontoxic Components, Antimicrob. Agents Chemother. 34:1949 (1990).Google Scholar
  49. 49.
    Thompson, R.A., and S. Allenmark, Factors Influencing the Micellar Catalyzed Hydrolysis of Long-Chain Alkyl Betainates, J. Colloid Interface Sci. 148:241 (1992).CrossRefGoogle Scholar
  50. 50.
    Lichtenwalter, G.D., L.E. Miller, C. Siram, and E.H. Wahl, PCT International Patent Application WO 9325648 A1 931223 (1993).Google Scholar
  51. 51.
    Ilardi, L.M., and S.A. Madison, U.S. Patent 5429755 A 950704 (1995).Google Scholar
  52. 52.
    Weissen, H.J., and N. Porta, European Patent Application EP 638639 A1 950215 (1995).Google Scholar
  53. 53.
    Hardy, F.E., and A.D. Willey, PCT Patent Application WO 9525157 A1 950921 (1995).Google Scholar
  54. 54.
    Epstein, W.W., D.S. Jones, E. Bruenger, and H.C. Rilling, The Synthesis of a Photolabile Detergent and Its Use in the Isolation and Characterization of Protein, Anal. Biochem. 119:304 (1982).CrossRefGoogle Scholar
  55. 55.
    Dunkin, I.R., A. Gittinger, D.C. Sherrington, and P. Whittaker, A Photodestructable Surfactant, J. Chem. Soc., Chem. Commun.: 2245 (1994).Google Scholar
  56. 56.
    Dunkin, I.R., A. Gittinger, D.C. Sherrington, and P. Whittaker, Synthesis, Characterization and Applications of Azo-Containing Photodestructible Surfactants, J. Chem. Soc., Perkin Trans. 2:1837 (1996).Google Scholar
  57. 57.
    Nuyken, O., K. Meindl, A. Wokaun, and T. Mezger, Photolabile Surfactants Based on the Diazosulfonate Group. 2. 4-(Acyloxy)benzenediazosulfonates and 4-(acylamino)Benzenediazosulfonates. J. Photochem. Photobiol. A.: Chem. 85:291 (1995).CrossRefGoogle Scholar
  58. 58.
    Nuyken, O., K. Meindl, A. Wokaun, and T. Mezger, A Light-Sensitive Diazosulfonate Surfactant as Emulsifier for Emulsion Polymerization. Macromol. Reports A 32:447 (1995).Google Scholar
  59. 59.
    Mezger, T., O. Nuyken, K. Meindl, and A. Wokaun, Light Decomposable Emulsifiers: Application of Alkyl-Substituted Aromatic Azosulfonates in Emulsion Polymerization, Polym. Mater. Sci. Eng. 73:153 (1995).Google Scholar
  60. 60.
    Jaeger, D.A., V.B. Reddy, and D.S. Bohle, Cleavable Doublechain Surfactant Co(III) Complexes, Tetrahedron Lett. 40:649 (1999).CrossRefGoogle Scholar
  61. 61.
    Madison, S.A., M. Massaro, G.B. Rattinger, and C.J. Wenzel, PCT Patent Application WO 9514661 A1 950601 (1995).Google Scholar
  62. 62.
    Jaeger, D.A., and T.G. Golich, Preparation and Characterization of Double-Chain Destructible Surfactants and Derived Vesicles, J. Am. Oil Chem. Soc. 64:1550 (1987).Google Scholar
  63. 63.
    Jaeger, D.A., J. Wettstein, and A. Zafar, Cleavable Quaternary Hydrazinium Surfactants, Langmuir 14:1940 (1998).CrossRefGoogle Scholar
  64. 64.
    Masayama, A., C. Endo, S. Takeda, and M. Nojima, Ozone-Cleavable Surfactants, A New Candidate for an Environmentally Friendly Surfactant, Chem. Comm 18:2023 (1998).CrossRefGoogle Scholar

Copyright information

© AOCS Press 2000

Authors and Affiliations

  • Per-Erik Hellberg
    • 1
  • Karin Bergström
    • 1
  • Krister Holmberg
    • 2
    Email author
  1. 1.Akzo Nobel Surface ChemistryStenungsundSweden
  2. 2.Department of Applied Surface ChemistryChalmers University of TechnologyGöteborgSweden

Personalised recommendations