Skip to main content
Log in

Direct driven wind energy conversion system based on hybrid excitation synchronous machine

  • Published:
Journal of Shanghai University (English Edition)

Abstract

A novel direct-drive type wind power generation system based on hybrid excitation synchronous machine (HESM) is introduced in this paper. The generator is connected to an uncontrollable rectifier, and a fully controlled voltage-source inverter is used to connect the system to utility grid. An intermediate DC bus exists between the rectifier and inverter. A new control strategy is proposed which achieves the maximum power point tracking (MPPT) with the control of excitation current of HESM and stabilizes the DC link voltage with the control of inverter output current simultaneously. Specially-designed buck circuit is used to control the excitation current of HESM, and grid voltage-oriented vector control strategy is employed to realize the decoupling of the inverter output power. Simulation results and experiment in 3 kW lab prototype show an excellent static and dynamic performance of the proposed system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carrasco J M, Franquelo L G, Bialasiewicz J T, Galvan E, Portillo-Guisado R C, Prats M A M, Leon J I, Moreno-Alfonso N. Power-electronic systems for the grid integration of renewable energy sources: A survey [J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1002–1016.

    Article  Google Scholar 

  2. Heier S. Grid integration of wind energy conversion systems [M]. Hobo-ken: Wiley, 1998.

    Google Scholar 

  3. Boukhezzar B, Siguerdidjane H. Nonlinear control of variable speed wind turbines without wind speed measurement [C]// Proceedings of 44th Conference on Decision and Control, and the European Control Conference, Serville, Spain. 2005: 3456–3461.

  4. Koutroulis E, Kalaitzakis K. Design of a maximum power tracking system for wind-energy-conversion applications [J]. IEEE Transactions on Industrial Electronics, 2006, 53(2): 486–494.

    Article  Google Scholar 

  5. Li C H, Zhu X J, Sui S, Hu W Q. Maximum power point tracking of a photovoltaic energy system using neural fuzzy techniques [J]. Journal of Shanghai University (English Edition), 2009, 13(1): 29–36.

    Article  Google Scholar 

  6. Tapia A, Tapia G, Ostolaza J X, Saenz J R. Modeling and control of a wind turbine driven doubly fed induction generator [J]. IEEE Transactions on Energy Conversion, 2003, 18(2): 194–204.

    Article  Google Scholar 

  7. Qiao W, Zhou W, Aller J M, Harley R G. Wind speed estimation based sensorless output maximization control for a wind turbine driving a DFIG [J]. IEEE Transactions on Industrial Electronics, 2008, 23(3): 1156–1169.

    Google Scholar 

  8. Higuchi Y, Yamamura N, Ishida M, Hori T. An improvement of performance for small-scaled wind power generating system with permanent magnet type synchronous generator [C]// IEEE Industrial Electronics Society Conference, Nagoya, Japan. 2000, 2: 1037–1043.

    Google Scholar 

  9. Senjyu T, Tamaki S, Muhando E, Urasaki N, Kinjo H, Funabashi T, Fujita H, Sekine H. Wind velocity and rotor position sensorless maximum power point tracking control for wind generation system [J]. Renewable Energy, 2006, 31(11): 1764–1775.

    Article  Google Scholar 

  10. Chinchilla M, Arnaltes S, Burgos J C. Control of permanent magnet generators applied to variable-speed wind-energy systems connected to the grid [J]. IEEE Transactions on Energy Conversion, 2006, 21(1): 130–135.

    Article  Google Scholar 

  11. Li S H, Haskew T A. Characteristic study of vector-controlled direct driven permanent magnet synchronous generator in wind power generation [C]// Power Engineering Society General Meeting-Conversion and Delivery of Electrial Energy in the 21st Century, Pittsburgh, USA. 2008, DOI: 10.1109/PES.2008.4596191.

  12. Srighakollapu N, Sensarma P S. Sensorless maximum power point tracking control in wind energy generation using permanent magnet synchronous generator [C]// Industrial Electronics 34th Annual Conference of IEEE, Orlando, USA. 2008: 2225–2230.

  13. Esmaili R, Xu L, Nichols D K. A new control method of permanent magnet generator for maximum power tracking in wind turbine application [C]// IEEE Power Engineering Society General Meeting, San Francisco, California, USA. 2005, 3: 2090–2095.

    Google Scholar 

  14. Amei K, Takayasu Y, Ohji T, Sakui M. A maximum power control of wind generator system using a permanent magnet synchronous generator and a boost chopper circuit [C]// Proceedings of the Power Conversion Conference, Osaka, Japan. 2002, 3: 1447–1452.

    Article  Google Scholar 

  15. Song S, Kang S, Hahm N. Implementation and control of grid connected AC-DC-AC power converter for variable speed wind energy conversion system [C]// IEEE Applied Power Electronics Conference and Exposition, Florida, USA. 2003: 154–158.

  16. Chen Y G, Wang Z Q. A control strategy of direct driven permanent magnet synchronous generator for maximum power point tracking in wind turbine application [C]// International Conference on Electrical Machines and Systems, Wuhan, China. 2008: 3921–3926.

  17. Zhang H J, Tang R Y. Theory and design of hybrid excitation permanent magnet synchronous generators [C]// International Conference on Electrical Machines and System, Shenyang,China.2001,2: 898–900.

    Google Scholar 

  18. Wu R, Dewan S B, Slemon G R. Analysis of an ACto-DC voltage source converter using PWM with phase and amplitude control [J]. IEEE Transactions on Power Electronics, 1991, 27(2): 355–364.

    Google Scholar 

  19. Noguchi T, Tomiki H, Kondo S, Takahashi I. Direct power control of PWM converter without powersource voltage sensors [J]. IEEE Transactions on Industrial Application, 1998, 34(3): 473–479.

    Article  Google Scholar 

  20. Malinowski M, Jasinski M, Kazmierkowski M P. Simple direct power control of three-phase PWM rectifier using space-vector modulation (DPC-SVM) [J]. IEEE Transactions on Industrial Electronics, 2004, 51(2): 447–454.

    Article  Google Scholar 

  21. Kazmierkowski M P, Malesani L. Current control techniques for three-phase voltage-source PWM converters: A survey [J]. IEEE Transactions on Industrial Electronics, 1998, 45(5): 691–703.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ruan  (阮 毅).

Additional information

Project supported by Delta Power Electronic Science and Education Development (Grant No.DRES2007002)

About this article

Cite this article

Ye, By., Ruan, Y., Yang, Y. et al. Direct driven wind energy conversion system based on hybrid excitation synchronous machine. J. Shanghai Univ.(Engl. Ed.) 15, 562–567 (2011). https://doi.org/10.1007/s11741-011-0787-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11741-011-0787-2

Keywords

Navigation