Skip to main content
Log in

Numerical simulation of a mathematical model for dry/wet-spun nasceni hollow fiber membrane

  • Environmental And Chemical Engineering
  • Published:
Journal of Shanghai University (English Edition)

Abstract

In an effort to find the effect of mass transfer, surface tension and drag forces on the velocity distribution, the mathematical model of the velocity profile of a nascent hollow fiber during membrane formation in the air gap region was numerically simulatec by using the Runge-Kutta method (fourth-order method). The effect of mass transfer on velocity distribution based on the complicatec function (G(C sh )) was presented and the effects of a complicated function were studied in two cases: in the first case, (G(C sh )) was constant; in the second, (G(C sh )) was variable. The latter was done by varying with the concentration of solvent in a nascent hollow fiber through the air-gap region. One empirical equation was used to describe this change and the predicted values had a better agreement with the experimental values. To verify the model hypotheses, hollow fiber membranes were spun from 20:80 polybenzimi dazole/polyetherimide dopes with 25.6 wt% solid in N, N-dimethylacetamide (DMAc) using water as the external and internal coagulants. Based on the experimental results of dry-jet wet-spinning process for the fabrication of hollow fiber membranes, it is found tha the model calculated values were in a good agreement with the experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C sh :

solvent concentration in a nascent hollow fiber (g·cm−3)

f o :

drag coefficient at the external surface of a nascent hollow fiber

F {ie213-1}:

material function defined (Eq. (2))

g :

gravitational function (980 cm·s−2)

G(C sh :

material function defined (Eq. (2))

H o :

the combined reciprocal radii of the curvatures at the outer skin of the nascent hollow fiber (cm−1)

L :

air-gap distance (cm)

R> i :

inner radius of a nascent hollow fiber (cm)

R o :

outer radius of a nascent hollow fiber (cm)

R′ o ,R″ o> :

the first and second order derivatives of R o, with respect to Z, respectively

σ o :

surface tension at air and nascent hollow fiber interface (lO−5 N·cm−1)

{ie213-2}:

strain rate or rate of elongation (s−1)

γ E :

elongation viscosity

γ o :

initial viscosity

{ie213-3}:

average velocity over the cross-section (cm·s−1)

ρ a :

density of ambient air (g·cm−3)

ρ h :

density of nascent hollow fiber (g·cm−3)

τ x,z :

internal stress (10−5 N·cm−2)

References

  1. Tadmor Z, Gogos C G. Principles of Polymer Processing [M]. Wiley, New York, 1979: 543.

    Google Scholar 

  2. Mckelvey S A, Clausi D T, Koros W J. A guide to establishing hollow fiber macroscopic properties for membrane applications[J]. J. Membr. Sci., 1997, 124: 223–232.

    Article  Google Scholar 

  3. Chung T S, Teoh S K, Lau W W Y, et al. Effect of shear stress within the spinneret on hollow fiber membrane morphology and separation performance[J]. Ind. Eng. Chem., 1998, 37: 3930–3938.

    Article  Google Scholar 

  4. Cabasso I. Hollow Fiber Membranes[M]. In: Kirk-Othmer Encyclopedia of Chemical Technology. Grayson M, Eckroth DI, Eds, Wiley, New York, 1980: 492.

    Google Scholar 

  5. Ekiner 0 M, Vassilators G. Polyaramide hollow fibers for hydrogen/methane separation-spinning and properties [J]. J. Membr. Sci., 1990, 53: 259–273.

    Article  Google Scholar 

  6. Liu T, Zhang D, Xu S, et al. Solution-spin hollow fiber polysulfone and polyethersulfone ultrafiltration membranes[J]. Sep. Sci. Technol., 1992, 27: 161–172.

    Google Scholar 

  7. Qin J J, Chung T S. Effect of dope flow rate on morphology, separation performance, thermal and mechanical properties of ultrafiltration hollow fiber membranes [J]. J. Membr. Sci., 1999, 157: 35–51.

    Article  Google Scholar 

  8. Koops G H. Dehydration of Acetic Acid by Pervaporation [D], Ph.D. Thesis, University of Twente, The Netherlands, 1992.

    Google Scholar 

  9. Van’t Hof J. Wet Spinning of Asymetric Hollow Fiber Membranes for Gas Separation[D], Ph. D. Thesis, University of Twente, The Netherlands, 1988.

    Google Scholar 

  10. Chung T S, Shieh J J, Qin J J, et al. Polymeric membranes for reverse osmosis, ultrafiltration, microfiltration, gas separation, pervaporation and reactor applications [A]. Advanced Functional Molecules and Polymers [C]. Nalwa H S, Ed., Overseas Publishers Association, Amsterdam, 2000.

    Google Scholar 

  11. Yang M, Chou M. Effect of post-drawing on the mechanical and mass transfer properties of polyacrylonitrile hollow fiber membranes[J]. J. Membr. Sci., 1996, 116: 279–291.

    Article  Google Scholar 

  12. Miao X, Sourirajan S, Zhang H, et al. Production of polyethersulfone hollow fiber ultrafiltration membranes, part I. Effects of water (internal coagulant) flow rate and length of air-gap[J]. Sep. Sci. Technol., 1996, 31:141–172.

    Google Scholar 

  13. Chung T S, Hu X. Effect of air-gap distance on the morphology and thermal properties of polyethersulfone hollow fibers[J]. J. Appl. Polym. Sci., 1997, 66:1067–1077.

    Article  Google Scholar 

  14. Chung T S, Xu Z L, Lin W H. Fundamental understanding of the effect of air gap distance on the fabrication of hollow fiber membranes [J]. J. Appl. Polym. Sci., 1999, 72: 379–395.

    Article  Google Scholar 

  15. Chung T S, Qin J J, Gu J. Effect of shear rate within the spinneret on morphology, separation performance and mechanical properties of ultrafiltration polyethersulfone hollow fiber membranes[J]. Chem. Eng. Sci., 1999, 55: 1077–1091.

    Article  Google Scholar 

  16. Parnaby J, Worth R A. Flow in converging annular regions[A]. Proc. Inst. Mech. Eng.[C], 1974, 188: 357–365.

    Google Scholar 

  17. Bird B, Armstrong R C, Hassager 0. Dynamics of Polymeric Liquids: Fluid Mechanics[M]. 2nd Edition, vol. 1, Wiley, New York, 1987.

    Google Scholar 

  18. Shilton S J. Flow profile induced in spinneret during hollow fiber membrane spinning [J]. J. Appl. Polym. Sci., 1997, 65: 1359–1362.

    Article  Google Scholar 

  19. Chung T S, Lin W H, Vora R H. The effect of shear rate on gas separation performance of 6FDA-durene polyimide hollow fibers[J]. J. Membr. Sci., 2000, 167: 55–66.

    Article  Google Scholar 

  20. Kase S, Matsuo T. Studies on melt spinning. I. Fundamental equations on the dynamics of melt spinning [J]. J. Apply. Polym. Sci., 1965, 3: 2541–2554.

    Google Scholar 

  21. Kase S, Matsuo T. Studies on melt spinning. II. Study-state and transient solution of fundamental equations compared with experimental results [J]. J. Apply. Polym. Sci., 1967, 11: 251–287.

    Article  Google Scholar 

  22. Gagon D K, Denn M M. Computer simulation of steady polymer melt spinning[J]. Polym. Eng. Sci., 1981, 21: 844–853.

    Article  Google Scholar 

  23. Georage H H. Model of steady-state melt spinning at intermediate take-up speeds [J]. Polym. Eng. Sci., 1982, 22: 292–299.

    Article  Google Scholar 

  24. Dutta A, Nadkarni V M. Identifying critical process variables in poly (Ethylene Terephthalate Melt Spinning) [J], Tex. Res. J., 1984, 54: 35–42.

    Article  Google Scholar 

  25. Tae H, Lee M S, Kim S Y, et al. Stud melt-spinning process of hollow fibers [J]. J. Appl. Polym. Sci., 1998, 68: 1209–1217.

    Article  Google Scholar 

  26. Sysoev, Alexey A. A mathematical model for kinetic study of analytic permeation from both liquid and gas phase through hollow fiber membranes into vacuum[J]. Anal. Chem., 2000, 72 (17): 4221–4229.

    Article  Google Scholar 

  27. Ziabick A. Fundamentals of Fiber Formation[M]. Wiley Interscience, New York, 1976.

    Google Scholar 

  28. White J L, Hancock T A. Fundamental analysis of the dynamics, mass transfer, and coagulation in wet spinning of fibers [J]. J. Appl. Polym. Sci., 1981, 26: 3157–3170.

    Article  Google Scholar 

  29. Han C D. Rheology in Polymer Processing[M]. Academic press, New York, 1976.

    Google Scholar 

  30. Lamonte R R, Han C D. Studies on melt spinning. II. Analysis of the deformation and heat transfer processes [J]. J. Appl. Polym. Sci., 1972, 16: 3285–3306.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project supported by the National Natural Science Foundation of China (Grant No. 20076009), the Science Foundation of Shanghai Priority Academic Disciplines, the Science Foundation of National Key Fundamental Research Development Plan (“973” plan, Grant No. 2003CB615705)

About this article

Cite this article

Fadhel, A.Q., Xu, Zl. Numerical simulation of a mathematical model for dry/wet-spun nasceni hollow fiber membrane. J. of Shanghai Univ. 8, 213–220 (2004). https://doi.org/10.1007/s11741-004-0043-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11741-004-0043-1

Key words

Navigation