Skip to main content
Log in

In-line monitoring of carbon nanoparticle epoxy dispersion processes

Insights into the process via next generation three roll mills and impedance spectroscopy

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The new generation of three roll mills is able to monitor occurring process loads while dispersion. This paper focuses on the interpretation of the gathered data to find criteria quantifying the dispersion state online. The aim is process time reduction. We used impedance spectroscopy to identify the dispersion state and correlated it with the occurring process loads. The dispersion process of a wide spectrum of carbon based nano particles, namely carbon black, single walled carbon nanotubes, multi walled carbon nanotubes, a few-layer graphene powder, electrochemically exfoliated graphite and a functionalized electrochemically exfoliated graphite was investigated. The filler content was varied along the material’s electrical percolation threshold. The criteria found led to a reduction of processing time and revealed the prevalent mechanisms during dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Notes

  1. Registration, Evaluation, Authorisation and Restriction of CHemicals.

References

  1. Fan Z, Advani SG (2007) Rheology of multiwall carbon nanotube suspensions. J Rheol 51(4):585–604. https://doi.org/10.1122/1.2736424

    Article  Google Scholar 

  2. Rahatekar SS, Koziol KKK, Butler SA, Elliott JA, Shaffer MSP, Mackley MR, Windle AH (2006) Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multiwall carbon nanotubes. J Rheol 50(5):599–610. https://doi.org/10.1122/1.2221699

    Article  Google Scholar 

  3. Tibbetts G, Lake M, Strong K, Rice B (2007) A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos Sci Technol 67(7–8):1709–1718. https://doi.org/10.1016/j.compscitech.2006.06.015

    Article  Google Scholar 

  4. Atchudan R, Pandurangan A, Joo J (2015) Effects of nanofillers on the thermo-mechanical properties and chemical resistivity of epoxy nanocomposites. J Nanosci Nanotechnol 15(6):4255–4267. https://doi.org/10.1166/jnn.2015.9706

    Article  Google Scholar 

  5. Khalil HPSA, Noriman NZ, Ahmad MN, Ratnam MM, Fuaad NAN (2007) Polyester composites filled carbon black and activated carbon from Bamboo (Gigantochloa scortechinii): physical and mechanical properties. J Reinf Plast Compos 26(3):305–320. https://doi.org/10.1177/0731684407065066

    Article  Google Scholar 

  6. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes-the route toward applications. Science (New York, N.Y.) 297(5582):787–792. https://doi.org/10.1126/science.1060928

    Article  Google Scholar 

  7. Tang LC, Wan YJ, Yan D, Pei YB, Zhao L, Li YB, Wu LB, Jiang JX, Lai GQ (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27. https://doi.org/10.1016/j.carbon.2013.03.050

    Article  Google Scholar 

  8. Xie X, Mai Y, Zhou X (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R: Rep 49(4):89–112. https://doi.org/10.1016/j.mser.2005.04.002. http://ac.els-cdn.com/S0927796X05000641/1-s2.0-S0927796X05000641-main.pdf?_tid=6c90d682-6713-11e7-8df9-00000aab0f26&acdnat=1499872058_5e3b9ef8c8e6ff859adbddee773d1258

  9. Meeuw H, Viets C, Liebig WV, Schulte K, Fiedler B (2016) Morphological influence of carbon nanofillers on the piezoresistive response of carbon nanoparticle/epoxy composites under mechanical load. Eur Polym J 85:198–210. https://doi.org/10.1016/j.eurpolymj.2016.10.027

    Article  Google Scholar 

  10. Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490(7419):192–200. https://doi.org/10.1038/nature11458

    Article  Google Scholar 

  11. Ren W, Cheng HM (2014) The global growth of graphene. Nat Nanotechnol 9(10):726–730. https://doi.org/10.1038/nnano.2014.229

    Article  Google Scholar 

  12. Zhang Q, Huang JQ, Qian WZ, Zhang YY, Wei F (2013) The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small (Weinheim an der Bergstrasse, Germany) 9(8):1237–1265. https://doi.org/10.1002/smll.201203252

    Article  Google Scholar 

  13. Inkwood Research (2018) Global carbon nanotubes market forecast 2018–2026. https://www.giiresearch.com/report/ink519825-global-carbon-nanotube-market-forecast.html

  14. Graphene market size, share , analysis and forecast to 2020. https://www.marketwatch.com/press-release/graphene-market-size-share-analysis-and-forecast-to-2020-2018-04-30

  15. Graphene market to expand with strong cagr of 33.5% by 2023; companies indulging in collaborations to sustain market position. https://www.prnewswire.com/news-releases/graphene-market-to-expand-with-strong-cagr-of-335-by-2023-companies-indulging-in-collaborations-to-sustain-market-position-680258713.html

  16. Grobert N (2007) Carbon nanotubes—becoming clean. Mater Today 10(1–2):28–35. https://doi.org/10.1016/S1369-7021(06)71789-8

    Article  Google Scholar 

  17. OCSiAl. Certification and h&s. https://ocsial.com/en/certification/. Accessed 22 Sept 2018

  18. OCSiAl. The first time ever, single wall carbon nanotubes complete reach registration. https://ocsial.com/en/news/217/. Accessed 4 Nov 2017

  19. Sixth element achieves reach registration for graphene and graphene oxide—company news—news—the sixth element (changzhou) materials technology co.,ltd. http://www.c6th.com/news/sixth-element-achieves-reach-registration-for-15828913.html. Accessed 25 Sept 2018

  20. Meeuw H, Radek M, Fiedler B (2018) Development of a colored GFRP with antistatic properties. AIP Conf Proc. https://doi.org/10.15480/882.1733

    Google Scholar 

  21. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci Manuf 41(10):1345–1367. https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  Google Scholar 

  22. Ma AWK, Yearsley KM, Chinesta F, Mackley MR (2009) A review of the microstructure and rheology of carbon nanotube suspensions. Proc Inst Mech Eng Part N J Nanoeng Nanosyst 222(3):71–94. https://doi.org/10.1243/17403499JNN153

    Google Scholar 

  23. Gojny FH, Wichmann M, Köpke U, Fiedler B, Schulte K (2004) Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos Sci Technol 64(15):2363–2371. https://doi.org/10.1016/j.compscitech.2004.04.002

    Article  Google Scholar 

  24. Yoon H, Yamashita M, Ata S, Futaba DN, Yamada T, Hata K (2014) Controlling exfoliation in order to minimize damage during dispersion of long SWCNTs for advanced composites. Sci Rep 4:3907. https://doi.org/10.1038/srep03907

    Article  Google Scholar 

  25. Texter J (2014) Graphene dispersions. Curr Opin Colloid Interface Sci 19(2):163–174. https://doi.org/10.1016/j.cocis.2014.04.004

    Article  Google Scholar 

  26. Meeuw H, Wisniewski V, Fiedler B (2018) Frequency or amplitude?—Rheo-electrical characterization of carbon nanoparticle filled epoxy systems. Polymers 10(9):999. https://doi.org/10.3390/polym10090999

    Article  Google Scholar 

  27. Inam F, Peijs T (2007) Re-agglomeration of carbon nanotubes in two-part epoxy system; influence of the concentration. In: 5th international Bhurbhan conference on applied science and technology (IBCAST 2007), Islamabad, Pakistan, 8–11 January 2007

  28. Meeuw H, Körbelin J, von Bernstorff D, Augustin T, Liebig WV, Fiedler B (2018) Smart dispersion: Validation of OCT and impedance spectroscopy as solutions for in-situ dispersion analysis of CNP/EP-composites. Materialia. https://doi.org/10.1016/j.mtla.2018.06.002

    Google Scholar 

  29. Frydel J, Mewes D, Luther S, Schuster RH (2008) Rubber sheets calendering 1: contribution to preventing the occurrence of gas entrapments. KGK Kautschuk Gummi Kunststoffe 61(6):286–293

    Google Scholar 

  30. Magnier R, Agassant JF, Bastin P (2013) Experiments and modelling of calender processing for shear thinning thermoplastics between counter rotating rolls with differential velocities. Int Polym Process 28(4):437–446. https://doi.org/10.3139/217.2794

    Article  Google Scholar 

  31. Luther S (2003) Ber{\"u}cksichtigung der freien Knetoberfl{\"a}che beim Berechnen von Str{\"o}mungsfeldern im Kalanderspalt. Doctoral dissertation

  32. Parvez K, Wu ZS, Li R, Liu X, Graf R, Feng X, Müllen K (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136(16):6083–6091. https://doi.org/10.1021/ja5017156

    Article  Google Scholar 

  33. Leopold C, Augustin T, Schwebler T, Lehmann J, Liebig WV, Fiedler B (2017) Influence of carbon nanoparticle modification on the mechanical and electrical properties of epoxy in small volumes. J Colloid Interface Sci 506:620–632. https://doi.org/10.1016/j.jcis.2017.07.085

    Article  Google Scholar 

  34. Li Y, Zhang H, Crespo M, Porwal H, Picot O, Santagiuliana G, Huang Z, Barbieri E, Pugno NM, Peijs T, Bilotti E (2016) In situ exfoliation of graphene in epoxy resins: a facile strategy to efficient and large scale graphene nanocomposites. ACS Appl Mater Interfaces 8(36):24112–24122. https://doi.org/10.1021/acsami.6b07492

    Article  Google Scholar 

  35. Li Y, Zhang H, Porwal H, Huang Z, Bilotti E, Peijs T (2017) Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites. Compos Part A Appl Sci Manuf 95:229–236

    Article  Google Scholar 

  36. Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, Boland C, Lotya M, Istrate OM, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien SE, McGuire EK, Sanchez BM, Duesberg GS, McEvoy N, Pennycook TJ, Downing C, Crossley A, Nicolosi V, Coleman JN (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13(6):624–630. https://doi.org/10.1038/nmat3944

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the German Research Foundation (DFG, project “Multifunktionale Komposite—Gedruckte Elektronik zur strukturintegrierten Zustandsüberwachung von Faser—Kunststoff—Verbunden”—Project number: 393868053) for financial support of this project. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement number 785219 and 768930). Moreover, the authors are grateful to OCSiAl for providing the SWCNT. Special thanks go to Hexion for providing the epoxy resins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Meeuw.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meeuw, H., Wisniewski, V.K., Köpke, U. et al. In-line monitoring of carbon nanoparticle epoxy dispersion processes. Prod. Eng. Res. Devel. 13, 373–390 (2019). https://doi.org/10.1007/s11740-019-00884-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-019-00884-5

Keywords

Navigation