Production Engineering

, Volume 12, Issue 3–4, pp 457–464 | Cite as

Thermal process simulation of droplet based metal printing with aluminium

  • Benjamin Himmel
  • Dominik Rumschöttel
  • Wolfram Volk
Production Process


Droplet based additive manufacturing is a branch of novel processes to build full dense metal parts by adding material droplet by droplet on a build platform. As each droplet solidifies individually upon contact, the quality of bonding to the existing material is determined by the adjacent surface temperatures and the temperature of the arriving droplet. To design a manufacturing process that ensures good bonds between all droplets, it is necessary to understand the relations between process parameters, the part’s geometry and thermal conditions for each arriving droplet. This paper presents a thermal simulation model that is based on Flow 3D software. By adding a user routine to the solver, it is possible to simulate the building process of a part consisting of several thousand droplets with an acceptable effort. This simulation is used to study the effect of production parameters (substrate temperature, droplet temperature and deposition frequency) as well as the parts geometry (layer size and height) on the resultant temperature field. The model was successfully validated with experimental data and can deliver valuable information during further development of this additive manufacturing process.


Ballistic particle manufacturing 3D printing Aluminium Simulation Droplet Bonding 

List of symbols






Heat capacity


Thermal conductivity


Thermal diffusivity


Latent heat of fusion


Fraction of fluid


Fraction solid


Cell surface area


Heat transfer coefficient


Melting point


Coordinate directions











This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Grant no. LU 604/42-1.


  1. 1.
    Bernhard F (2014) Handbuch der Technischen Temperaturmessung, 2nd edn. VDI-Buch, Springer Vieweg, BerlinGoogle Scholar
  2. 2.
    Cao W, Miyamoto Y (2006) Freeform fabrication of aluminum parts by direct deposition of molten aluminum. J Mater Process Technol 173(2):209–212. CrossRefGoogle Scholar
  3. 3.
    Chao Y, Qi L, Xiao Y, Luo J, Zhou J (2012) Manufacturing of micro thin-walled metal parts by micro-droplet deposition. J Mater Process Technol 212(2):484–491. CrossRefGoogle Scholar
  4. 4.
    Chao Y, Qi L, Zuo H, Luo J, Hou X, Li H (2013) Remelting and bonding of deposited aluminum alloy droplets under different droplet and substrate temperatures in metal droplet deposition manufacture. Int J Mach Tool Manuf 69:38–47. CrossRefGoogle Scholar
  5. 5.
    Chao Y, Qi L, Bai Z (2016) 3d dynamic simulation analysis of thermal–mechanical coupling during 7075 aluminum alloy micro-droplet deposition manufacture. Rare Met Mater Eng 45(8):1924–1930. CrossRefGoogle Scholar
  6. 6.
    Du J, Wei Z (2015) Numerical analysis of pileup process in metal microdroplet deposition manufacture. Int J Therm Sci 96:35–44. CrossRefGoogle Scholar
  7. 7.
    Fang M, Chandra S, Park CB (2008) Building three-dimensional objects by deposition of molten metal droplets. Rapid Prototyping J 14(1):44–52. CrossRefGoogle Scholar
  8. 8.
    Fang M, Chandra S, Park CB (2009) Heat transfer during deposition of molten aluminum alloy droplets to build vertical columns. J Heat Transf 131(11):1–7. CrossRefGoogle Scholar
  9. 9.
    Ghafouri-Azar R, Shakeri S, Chandra S, Mostaghimi J (2003) Interactions between molten metal droplets impinging on a solid surface. Int J Heat Mass Transf 46(8):1395–1407. CrossRefGoogle Scholar
  10. 10.
    Haferl S, Poulikakos D (2003) Experimental investigation of the transient impact fluid dynamics and solidification of a molten microdroplet pile-up. Int J Heat Mass Transf 46:535–550CrossRefGoogle Scholar
  11. 11.
    Hirt C, Nichols B (1981) Volume of fluid (vof) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225. CrossRefzbMATHGoogle Scholar
  12. 12.
    Karampelas I, Vader S, Vader Z, Sukhotskiy V, Verma A, Garg G, Tong M, Furlani E (2017) Drop-on-demand 3D metal printing. In: Laudon M, Romanowicz B (eds) TechConnect briefs 2017, TechConnect, Danville, CA, USAGoogle Scholar
  13. 13.
    Li H, Wang P, Qi L, Zuo H, Zhong S, Hou X (2012) 3d numerical simulation of successive deposition of uniform molten al droplets on a moving substrate and experimental validation. Comput Mater Sci 65:291–301. CrossRefGoogle Scholar
  14. 14.
    Li H, Li H, Qi L, Jun LUO, Zuo H (2014) Simulation on deposition and solidification processes of 7075 al alloy droplets in 3d printing technology. Trans Nonferrous Met Soc 24(6):1836–1843. CrossRefGoogle Scholar
  15. 15.
    Li S, Wei Z, Du J, Zhao G, Wang X, Lu B (2016) Numerical and experimental investigation of molten metal droplet deposition applied to rapid prototyping. Appl Phys A 122(8):146. CrossRefGoogle Scholar
  16. 16.
    Liu Q, Orme M (2001) On precision droplet-based net-form manufacturing technology. Proc Inst Mech Eng 215(10):1333–1355. CrossRefGoogle Scholar
  17. 17.
    Luo J, Yang F, Zhong S, Qi L (2014) Modelling of uniform micron-sized metal particles production using harmonic mechanical excitation. Proc Eng 81:1312–1317. CrossRefGoogle Scholar
  18. 18.
    Mills KC (2002) Recommended Values of thermophysical properties for commercial alloys. Woodhead Publishing, CambridgeCrossRefGoogle Scholar
  19. 19.
    Pasandideh-Fard M, Bhola R, Chandra S, Mostaghimi J (1998) Deposition of tin droplets on a steel plate: simulations and experiments. Int J Heat Mass Transf 41(19):2929–2945. CrossRefGoogle Scholar
  20. 20.
    Polifke W, Kopitz J (2009) Wärmeübertragung, 2nd edn. Pearson Studium, MunichGoogle Scholar
  21. 21.
    Rumschoettel D, Kunzel F, Irlinger F, Lueth TC (2016) A novel piezoelectric printhead for high melting point liquid metals. In: 2016 Pan-Pacific microelectronics symposium. IEEE, pp 1–8.
  22. 22.
    Rumschoettel D, Griebel B, Irlinger F, Lueth TC (2017) A fast pneumatic droplet generator for the ejection of molten aluminum. In: 2017 Pan-Pacific microelectronics symposium. IEEE, Piscataway, NJGoogle Scholar
  23. 23.
    Schiaffino S, Sonin AA (1997) Motion and arrest of a molten contact line on a cold surface: an experimental study. Phys Fluids 9(8):2217. CrossRefGoogle Scholar
  24. 24.
    Tseng AA, Lee MH, Zhao B (2001) Design and operation of a droplet deposition system for freeform fabrication of metal parts. J Eng Mater Technol ASME 123(1):74–84. CrossRefGoogle Scholar
  25. 25.
    Wang SP, Wang GX, Matthys EF (1998) Melting and resolidification of a substrate in contact with a molten metal: operational maps. Int J Heat Mass Transf 41(10):1177–1188. CrossRefzbMATHGoogle Scholar
  26. 26.
    Wang T, Kwok TH, Zhou C (2017) In-situ droplet inspection and control system for liquid metal jet 3d printing process. Proc Manuf 10:968–981. Google Scholar
  27. 27.
    Zhang D, Qi L, Luo J, Yi H, Hou X (2017) Direct fabrication of unsupported inclined aluminum pillars based on uniform micro droplets deposition. Int J Mach Tools Manuf 116:18–24. CrossRefGoogle Scholar
  28. 28.
    Zhao Z, Poulikakos D, Fukai J (1996) Heat transfer and fluid dynamics during the collision of a liquid droplet on a substrate—I. Modeling. Int J Heat Mass Transf 39(13):2771–2789. CrossRefzbMATHGoogle Scholar
  29. 29.
    Zhao Z, Poulikakos D, Fukai J (1996) Heat transfer and fluid dynamics during the collision of a liquid droplet on a substrate—II. Experiments. Int J Heat Mass Transf 39(13):2791–2802. CrossRefzbMATHGoogle Scholar
  30. 30.
    Hs Zuo, Hj Li, Qi Lh, Luo J, Zhong Sy, Wu Yf (2015) Effect of non-isothermal deposition on surface morphology and microstructure of uniform molten aluminum alloy droplets applied to three-dimensional printing. Appl Phys A 118(1):327–335. CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2018

Authors and Affiliations

  1. 1.Technical University of MunichGarchingGermany
  2. 2.Technical University of MunichGarchingGermany

Personalised recommendations