Production Engineering

, Volume 12, Issue 3–4, pp 331–340 | Cite as

A design approach for the development of flexible production machines

Focus on improving the changeover process of format-flexible packaging machines
  • Georg Götz
  • Lucas Kiefer
  • Christoph Richter
  • Gunther Reinhart
Production Management


The rising demand for individualised products is one of the most important trends in today’s market. This is having a big impact on the manufacturing industry since it means that the flexibility of production machines must be increased. Packaging machines are greatly affected by the rising demand for format-flexibility because of decreasing batch sizes, the high number of format changes and the resulting lack of productivity. In the past, packaging machines as well as other production machines were developed with a focus on large-scale production. Hence, offering format-flexible packaging machines is a new challenge for manufacturers. Improvements in format-flexibility have to take place within the development process of the manufacture of packaging machines. This paper presents an overall concept which integrates four design modules into a generalised development process. These four design modules support developers in creating a solution regarding format flexibility which is, from a technical and economic point of view optimised for the demands of the users of packaging machines. The approach is focused on the special requirements of packaging machines, but it can be adapted for other types of production machines.


Format-flexibility Packaging machines Production machines Development process Scenario management 



The authors would like to thank the Bavarian Ministry of Economic Affairs and Media, Energy and Technology for the funding of the project Green Factory Bavaria within the program “Zukunftsinitiative Aufbruch Bayern”.


  1. 1.
    Neugebauer R (2012) Werkzeugmaschinen. Springer Vieweg, BerlinCrossRefGoogle Scholar
  2. 2.
    Rudolf H (2006) Wissensbasierte Montageplanung in der Digitalen Fabrik am Beispiel der Automobilindustrie. Herbert Utz, MünchenGoogle Scholar
  3. 3.
    Jäger S (2004) Absatzsysteme für Mass Customization. Deutscher Universitäts-Verlag, MünchenCrossRefGoogle Scholar
  4. 4.
  5. 5.
    Jonas K (2005) Packaging Machinery and Equipment. U.S. Commercial Service GermanyGoogle Scholar
  6. 6.
    Dumoulin E (2012) Changes and perspectives in food studies. Int J Food Stud IJFS 1:211–221CrossRefGoogle Scholar
  7. 7.
    Römisch P, Weiß M (2014) Projektierungspraxis Verarbeitungsanlagen. Springer Vieweg, WiesbadenCrossRefGoogle Scholar
  8. 8.
    Sethi A, Sethi S (1990) Flexibility in manufacturing: a survey. Int J Flexible Manuf Syst 2:289–328CrossRefGoogle Scholar
  9. 9.
    Wiendahl H-P, ElMaraghy HA, Nyhuis P, Zäh MF, Wiendahl H–H, Duffie N, Brieke M (2007) Changeable manufacturing—classification, design and operation. Ann CIRP 56/2:783–809CrossRefGoogle Scholar
  10. 10.
    Abele E, Liebeck T, Wörn A (2006) measuring flexibility in investment decisions for manufacturing systems. Ann CIRP 55/1:433–436CrossRefGoogle Scholar
  11. 11.
    Slack N (1983) Flexibility as a manufacturing objective. Int J Operat Prod Manag 3:4–13CrossRefGoogle Scholar
  12. 12.
    Zäh M, Möller N, Vogl W (2005) Symbiosis of Changeable and Virtual Production. CARV 05 International Conference on Changeable, Agile, Reconfigurable and Virtual Production, pp. 3–10Google Scholar
  13. 13.
    Wiendahl H-P (2009) Veränderungsfähigkeit von Produktionsunternehmen - Ein morphologischer Ansatz. ZWF 104:32–37CrossRefGoogle Scholar
  14. 14.
    Bleisch G, Langowski H-C, Majschak J-P (2014) Lexikon Verpackungstechnik. B. Behr’s, HamburgGoogle Scholar
  15. 15.
    Shingo S (1985) A Revolution in manufacturing: the SMED system. Productivity Press, CambridgeGoogle Scholar
  16. 16.
    McIntosh R, Culley S, Mileham A, Owen G (2001) Improving Changeover Performance. Butterworth-Heinemann, OxfordGoogle Scholar
  17. 17.
    Sekine K, Arai K (1992) Kaizen for quick changeover—going beyond SMED. Productivity Press, CambridgeGoogle Scholar
  18. 18.
    Mileham A, Culley S, Owen G, McIntosh R (1999) Rapid changeover—pre-requisite for responsive manufacture. Int J Operations Prod Manag 19:785–796CrossRefGoogle Scholar
  19. 19.
    Van Gouberger D, van Landeghem H (2002) Rules for integrating fast changeover capabilities into new equipment design. Robot Comput Integrated Manuf 18:205–214CrossRefGoogle Scholar
  20. 20.
    Reik M, McIntosh R, Culley S, Mileham A, Owen G (2006) A formal design for changeover methodology. Part 1: theory and background. J Eng Manuf 220:1225–1235CrossRefGoogle Scholar
  21. 21.
    Reik M, McIntosh R, Culley S, Mileham A, Owen G (2006) A formal design for changeover methodology. Part 2: methodology and case study. J Eng Manuf 220:1237–1247CrossRefGoogle Scholar
  22. 22.
    Owen G, Matthews J, McIntosh R, Culley S (2011) Design for changeover (DFC): enabling flexible and highly responsive manufacturing. In: Fogliatto F, da Silveira G (2011) Mass customization. Springer, LondonGoogle Scholar
  23. 23.
    VDI-Gesellschaft (1993) VDI 2221: Systematic approach to the development and design of technical systems and products. Beuth, BerlinGoogle Scholar
  24. 24.
    VDI-Gesellschaft (2004) VDI 2206: Design methodology for mechatronic systems. Beuth, BerlinGoogle Scholar
  25. 25.
    Götz G, Rohrhirsch M, Gebbe C, Richter C, Reinhart G (2017) Economical comparison of packaging machines: a new approach based on an economic evaluation model. Appl Mech Mater 856:109–116CrossRefGoogle Scholar
  26. 26.
    Gausemeier J, Fink A, Schlake O (1998) Scenario management. Technol Forecast Soc Chang 59:111–130CrossRefGoogle Scholar
  27. 27.
    Gausemeier J, Plass C (2014) Zukunftsorientierte Unternehmensgestaltung. Carl Hanser, München, p 48CrossRefGoogle Scholar
  28. 28.
    Schack R (2008) Methodik zur bewertungsorientierten Skalierung der Digitalen Fabrik. Utz, München, p 126Google Scholar
  29. 29.
    Götze M (2008) Investitionsrechnung. Springer, Berlin, p 375CrossRefGoogle Scholar
  30. 30.
    Klemke T (2014) Planung der systemischen Wandlungsfähigkeit von Fabriken. TEWISS, Garbsen, p 67Google Scholar
  31. 31.
    Götz G, Stich P, Backhaus J, Reinhart G (2016) Design Approach for the Development of Format-Flexible Packaging Machines. International Conference on Mechatronics and Computational Mechanics 2016, SingaporeGoogle Scholar
  32. 32.
    Schuh G, Klappert S (2011) Technologiemanagement. Springer, Berlin, p 230CrossRefGoogle Scholar
  33. 33.
    Götz G, Fink J, Richter C, Reinhart G (2016) Increasing the format-flexibility of packaging machines: experimental study on laser beam sealing and cutting. Appl Mech Mater 856:201–208CrossRefGoogle Scholar
  34. 34.
    Götz G, Stich P, Thunig S, Glasschröder J, Reinhart G (2015) Improving resource and energy efficiency of packaging machines: contribution of an increasing format flexibility. Appl Mech Mater 805:257–264CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2018

Authors and Affiliations

  1. 1.Fraunhofer Research Institution for Casting, Composite and Processing Technology IGCVAugsburgGermany

Personalised recommendations