Numerical investigation of chatter suppression via parametric anti-resonance in a motorized spindle unit during milling

  • E. Abele
  • F. Dohnal
  • M. Feulner
  • T. Sielaff
  • C. Daume
Machine Tool
  • 31 Downloads

Abstract

A new concept for increasing process stability during milling processes is presented utilizing a parametric anti-resonance. The beneficial effect is examined by numerical calculations in the time domain for an example spindle which is supported conventionally by ball bearings and is equipped with an additional active magnetic bearing that enables the realization of a deliberate parametric excitation. In the present study the stiffness of this active support bearing is changed periodically with time. The parametric excitation is tuned to a parametric anti-resonance which triggers the transfer of vibration energy between the vibration modes of the underlying system without this additional time-periodicity. It is highlighted how vibration energy is transferred from the first bending mode of the rotor, which is the most critical one by means of regenerative chatter, to a mode with higher damping in order to increase the effective damping of the entire spindle drive unit.

Keywords

Milling Parametric anti-resonance Magnetic bearing Energy transfer 

References

  1. 1.
    Brecher C, Fey M, Falker J, Möller B (2015) Externe Dämpfung bei Hochgeschwindigkeitsspindeln - Vergleichende Untersuchung des Einflusses einer Dämpfungsbuchse auf das Stabilitätsverhalten. In: wt-online, Nr., vol 5, pp 257–262Google Scholar
  2. 2.
    Tlusty J (1954) Selbsterregte Schwingungen bei der Bearbeitung der Metalle. Acta Technica Academia Scientiarum Hungaricae 8:319–360Google Scholar
  3. 3.
    Tobias S A (1965) Machine tool vibration. Blackie and Sons Ltd., GlasgowGoogle Scholar
  4. 4.
    Altintas Y, Weck M (2004) Chatter stability of metal cutting and grinding. CIRP Ann Manuf Technol 53(2):619–642 (ISSN 0007–8506) CrossRefGoogle Scholar
  5. 5.
    Altintas Y, Chan Philip K (1992) In-process detection and suppression of chatter in milling. Int J Mach Tools Manuf 32(3):329–347 (ISSN 0890–6955) CrossRefGoogle Scholar
  6. 6.
    Altintaş Y, Budak E (1995) Analytical prediction of stability lobes in milling. CIRP Ann Manuf Technol 44(1):357–362 (ISSN 00078506) CrossRefGoogle Scholar
  7. 7.
    Altintas Y, British Colubia, University of (Hrsg.) (2000) Manufacturing automation. Cambridge University PressGoogle Scholar
  8. 8.
    Abele E, Sielaff T, Schiffler A (2012) Method for chatter detection with standard PLC systems. In: Production engineering : WGP. Springer, Heidelberg 6 (ISSN 0944–6524) Google Scholar
  9. 9.
    Schiffler A (2011) Steuerungsintegrierte Prozessüberwachung bei der Zerspanung mit Motorspindeln. Shaker Verlag, MaastrichtGoogle Scholar
  10. 10.
    Kern S, Ehmann C, Nordmann R, Roth M, Schiffler A, Abele E (2006) Active damping of chatter vibrations with an active magnetic bearing in a motor spindle using \(\mu\)-synthesis and an adaptive filter. In: Proceedings of The 8th International Conference on Motion and Vibration Control (MOVIC 2006), KoreaGoogle Scholar
  11. 11.
    Ries M, Gebert K (2006) Increase of material removal rate with an active HSC milling spindle. In: Proceedings of the Adaptronic Congress 2006—Lokhalle GöttingenGoogle Scholar
  12. 12.
    Neugebauer R, Denkena B, Wegener K (2007) Mechatronic systems for machine tools. CIRP Ann Manuf Technol 56(2):657–686 (ISSN 0007–8506) CrossRefGoogle Scholar
  13. 13.
    Abele E, Altintas Y, Brecher C (2010) Machine tool spindle units. CIRP Ann Manuf Technol 59(2):781–802 (ISSN 0007–8506) CrossRefGoogle Scholar
  14. 14.
    Den Hartog JP, Dover (Hrsg.) (1984) Mechanical vibrations. 4th ednGoogle Scholar
  15. 15.
    Thomson WT (1981) Theory of vibrations with applications, 2nd edn. Prentice Hall, USAGoogle Scholar
  16. 16.
    Vakakis AF, Gendelman OV, Berg LA, McFarland DM, Kerschen G, Lee YS (2009) Solid mechanics and its applications. Bd. vol 156: Nonlinear targeted energy transfer in mechanical and structural systems. SpringerGoogle Scholar
  17. 17.
    Yakubovich VA, Starzhinskii VM (1975) Linear differential equations with periodic coefficients, vol. 1 and 2Google Scholar
  18. 18.
    Yamamoto T, Saito, A (1970) On the vibrations of summed and differential types under parametric excitation. In: Memoirs of the Faculty of Engineering, Nr., vol 22, pp 54–123Google Scholar
  19. 19.
    Bolotin VV (1964) The dynamic stability of elastic systems. In: Holden DayGoogle Scholar
  20. 20.
    Tondl A (1998) To the problem of quenching self-excited vibrations. Acta Technica CSAV, Nr. 43:109–116Google Scholar
  21. 21.
    Dohnal F (2009) Damping of mechanical vibrations by parametric excitation: parametric resonance and anti-resonance. Saarbrücken : Südwestdeutscher Verlag für Hochschulschriften (ISBN 978–3–8381–0343–3) Google Scholar
  22. 22.
    Fatimah S, Verhulst F (2003) Suppressing flow-induced vibrations by parametric excitation. Nonlinear Dyn 31(3):275–298 (ISSN 0924–090X) MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Dohnal F (2012) A contribution to the mitigation of transient vibrations: parametric anti-resonance; theory, experiment and interpretation. Technical University Darmstadt, GermanyGoogle Scholar
  24. 24.
    Dohnal F (2008) Damping by parametric stiffness excitation: resonance and anti-resonance. J Vibr Control 14(5):669–688 (ISSN 1077–5463) MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Dohnal F (2012) Experimental studies on damping by parametric excitation using electromagnets. Proc Inst Mech Eng Part C J Mech Eng Sc 226(8):2015–2027 (ISSN 0954–4062) CrossRefGoogle Scholar
  26. 26.
    Yao Z, Mei D, Chen Z (2011) Chatter suppression by parametric excitation: model and experiments. J Sound Vibr 330(13):2995–3005 (ISSN 0022460X) CrossRefGoogle Scholar
  27. 27.
    Rezig A, Ouali M (2012) Suppressing boring bar vibrations by parametric excitation. Adv Prod Manag 4(7):237–244Google Scholar
  28. 28.
    Schweitzer G, Maslen E H (2009) Magnetic bearings: theory, design, and application to rotating machinery. Springer, Dordrecht and New York (ISBN 9783642101533) Google Scholar
  29. 29.
    N N (2009) ANSYS theory reference for the mechanical APDL and mechanical applications. Release 12.0Google Scholar
  30. 30.
    Cao Y, Altintas Y (2004) A general method for the modeling of spindle-bearing systems. ASME J Mech Des 126:1089–1104CrossRefGoogle Scholar
  31. 31.
    Kern S, Schiffler A, Nordmann R, Abele E (2008) Modelling and active damping of a motor spindle with speed-dependent dynamics. In: 9th International Conference on Vibrations in Rotating MachineryGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2018

Authors and Affiliations

  • E. Abele
    • 1
  • F. Dohnal
    • 2
  • M. Feulner
    • 1
  • T. Sielaff
    • 1
  • C. Daume
    • 1
  1. 1.Institute of Production Management, Technology and Machine ToolsTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Department of Biomedical Computer Science and MechatronicsUMITLienzAustria

Personalised recommendations