Skip to main content
Log in

Melt pool geometry in laser blank rim melting to generate continuous cylindrical preforms

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

When scaling the size of a body, size effects can occur. In micro range, the effects of surface tension dominate effects caused by gravitational force. This size effect is used within the laser blank rim melting process wherein the rim of a blank is locally melted by a laser beam. The melt pool forms cylindrical due to surface tension and thus locally increases the thickness of the blank, called cylindrical preform. In this paper process parameters are presented to generate cylindrical preforms with constant diameter at edges of blanks of 1.4301 (AISI 304). By observations with high speed camera and pyrometer it is found that, independent of the desired diameter of the cylindrical preform, the geometry of the melt pool needs to have a length-to-height-ratio of 3.0 ± 0.4 to generate a continuous cylindrical preform. An analytical model is set up and presented supporting this finding. For larger values of the length-to-height-ratio, the melt pool separates and forms droplets while for smaller values formation of preform was not detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gartner (2017) Smartphone sales worldwide 2007–2016|Statistic. https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/. Accessed 16 May 2017

  2. van Brussel H, Peirs J, Reynaerts D et al (2000) Assembly of Microsystems. CIRP Ann Manuf Technol 49(2):451–472

    Article  Google Scholar 

  3. Woizeschke P, Brüning H, Vollertsen F (2015) Lasergenerierte Blechkanten. Laser Magazin 5:22–24

    Google Scholar 

  4. Brüning H, Jahn M, Vollertsen F et al (2016) Influence of laser beam absorption mechanism on eccentricity of preforms in laser rod end melting. In: 11th International Conference on Micro Manufacturing(123)

  5. Masuzawa T (2000) State of the Art of Micromachining. CIRP Ann Manuf Technol 49(2):473–488. doi:10.1016/S0007-8506(07)63451-9

    Article  Google Scholar 

  6. Vollertsen F, Walther R (2008) Energy balance in laser-based free form heading. CIRP Ann Manuf Technol 57(1):291–294. doi:10.1016/j.cirp.2008.03.028

    Article  Google Scholar 

  7. Otto A, Koch H, Leitz K-H et al. (2011) Numerical simulations—a versatile approach for better understanding dynamics in laser material processing. Phys Proc 12:11–20. doi:10.1016/j.phpro.2011.03.003

    Article  Google Scholar 

  8. Stephen A, Vollertsen F (2011) Influence of the rod diameter on the upset ratio in laser-based free form heading. Steel Res Int. doi:10.1375/ajse.35.2.233

    Google Scholar 

  9. Oehler G (1953) Die höchst erreichbare Bördelhöhe beim Kragenanziehen vorgelochter Bleche. In: Oehler G (ed) Untersuchungen an prägegemusterten und vorgelochten Blechen. VS Verlag für Sozialwissenschaften, Wiesbaden, pp 27–39

    Chapter  Google Scholar 

  10. Merklein M, Hagenah H (2016) Introduction to sheet-bulk metal forming. Prod Eng Res Dev 10(1):1–3. doi:10.1007/s11740-016-0661-z

    Article  Google Scholar 

  11. Merklein M, Allwood JM, Behrens B-A et al (2012) Bulk forming of sheet metal. CIRP Ann Manuf Technol 61(2):725–745. doi:10.1016/j.cirp.2012.05.007

    Article  Google Scholar 

  12. Neumann S (2012) Einflussanalyse beim single mode Faserlaserschweißen zur Vermeidung des Humping-Phänomens. Strahltechnik, vol 48. BIAS Verlag, Bremen

  13. Eggers J (1997) Tropfenbildung. Phys Blätter 53(5):431–434

    Article  Google Scholar 

  14. Strutt, J. W., Lord Rayleigh (1878) On the instability of jets. Proc Lond Math Soc 10:4–13

    MathSciNet  Google Scholar 

  15. Vollertsen F, Biermann D, Hansen HN et al (2009) Size effects in manufacturing of metallic components. CIRP Ann Manuf Technol 58: 566–587. doi:10.1016/j.cirp.2009.09.002

    Article  Google Scholar 

  16. Nguyen TC, Weckman DC, Johnson DA et al (2013) High speed fusion weld bead defects. Sci Technol Weld Join 11(6):618–633. doi:10.1179/174329306X128464

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for subproject A3 “Stoffanhäufen” within the SFB 747 (Collaborative Research Centre) “Mikrokaltumformen—Prozesse, Charakterisierung, Optimierung”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Schattmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brüning, H., Schattmann, C. & Krüger, M. Melt pool geometry in laser blank rim melting to generate continuous cylindrical preforms. Prod. Eng. Res. Devel. 11, 425–433 (2017). https://doi.org/10.1007/s11740-017-0760-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-017-0760-5

Keywords

Navigation