Distortion-free laser beam shaping for material processing using a digital micromirror device

Abstract

Digital micromirror devices (DMD) are increasingly used in laser-based manufacturing for a maskless beam shaping in order to realize simultaneous 2D/3D material processing. Thereby, the DMD has to be irradiated under a sharp angle to achieve acceptable projection quality with negligible distortion phenomena. In this article, we present a novel setup for DMD-based laser material processing. It enables the irradiation under large angles (up to 60\(^{\circ }\)), the reduction of optical elements as well as machine size. Occurring optical distortions during the amplitude-based laser beam shaping are characterized. To eliminate these phenomena, we implement an optical modelling of the DMD patterns, taking into account the propagation through the tilted interfaces. The resulting imaging of different desired shapes is verified experimentally for its geometrical properties such as length, radius and aspect ratio. Thereby, an angle-dependent correction and high shape accuracy of the image projection is shown. This novel arrangement may have applications in direct laser writing and photochemical machining.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Vollertsen F, Biermann D, Hansen HN, Jawahir IS, Kuzma K (2009) Size effects in manufacturing of metallic components. CIRP Ann Manuf Technol 58:566–587

    Article  Google Scholar 

  2. 2.

    Dimov S, Brousseau E, Minev R, Bigot S (2012) Micro- and nanomanufacturing: challenges and opportunities, Proc IMechE Part C. J Mech Eng Sci 226:3–15

    Article  Google Scholar 

  3. 3.

    Santo L, Trovalusci F, Davim JP (2014) Laser applications in the field of plastics. Compr Mater Process 9:243–260

    Article  Google Scholar 

  4. 4.

    Mack C (2007) Fundamental principles of optical lithography: the science of microfabrication. Wiley, Chichester

    Google Scholar 

  5. 5.

    Falldorf C, Agour M, Bergmann RB (2015) Digital holography and quantitative phase contrast imaging using Computational Shear Interferometry. Optical Eng 54(2):024110

    Article  Google Scholar 

  6. 6.

    Falldorf C, von Kopylow C, Bergmann RB (2010) Liquid crystal spatial light modulators in optical metrology. In: Proceedings of the 9th Euro-American Workshop on Information Optics (WIO), Helsinki

  7. 7.

    Tauro S, Baas A, Palima D, Glckstad J (2011) Experimental demonstration of generalized phase contrast based Gaussian beam-shaper. Opt Express 19:7106–7111

    Article  Google Scholar 

  8. 8.

    Wu H, Hu W, Hu HC, Lin XW, Zhu G, Choi JW, Chigrinov V, Lu YQ (2012) Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system. Opt Express 20:16684–16689

    Article  Google Scholar 

  9. 9.

    Chen X, Yan B, Song F, Wang Y, Xiao F, Alameh K (2012) Diffraction of digital micromirror device gratings and its effect on properties of tunable fiber lasers. Appl Opt 51:72147220

    Google Scholar 

  10. 10.

    Dudley D, Duncan WM, Slaughter J (2003) Emerging digital micromirror device (DMD) applications. In: Proc. SPIE 4985, MOEMS Display and Imaging Systems 14

  11. 11.

    Sun C, Fang N, Wu DM, Zhang X (2005) Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors Actuators A 121:113120

    Google Scholar 

  12. 12.

    Heath DJ, Feinaeugle M, Grant-Jacob JA, Mills B, Eason RW (2015) Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films. Opt Mater Express 5(5):1129–1136

  13. 13.

    Sontheimer AB (2002) Digital micromirror device (DMD) Hinge memory lifetime reliability modeling. In: 40th Annual International Reliability Physics Symposium, Dallas, Texas, pp 118-121

  14. 14.

    N. N., DMD 0.7 XGA 12 DDR DMD (2005) Discovery: product preview data sheet. TI DN 2503686, pp 1–20

  15. 15.

    Messaoudi H, Vollertsen F (2017) Compact module for maskless and simultaneous 2D laser chemical machining. In: Wulfsberg JP, Sanders A (eds) Lecture Notes in Production Engineering. Small machine tools for small workpieces, pp 49–64

  16. 16.

    Blanche PA, Carothers D, Wissinger J, Peyghambarian N (2014) Digital micromirror device as a diffractive reconfigurable optical switch for telecommunication. J Micro/Nanolithogr MEMS MOEMS 13(1):011104

    Article  Google Scholar 

  17. 17.

    Brown BR, Lohmann AW (1969) Computer-generated binary holograms. IBM J Res Develop 13(2):160–168

    Article  Google Scholar 

  18. 18.

    Mills B, Feinaeugle M, Sones CL, Rizvi N, Eason RW (2013) Sub-micron-scale femtosecond laser ablation using a digital micromirror device. J Micromech Microeng 23:035005

    Article  Google Scholar 

  19. 19.

    Zhang S, Zhong H, Asoubar D, Wyrowski F, Kuhn M (2012) Tilt operator for electromagnetic fields and its application to propagation through plane interfaces, Optical Systems design 2012. Proc SPIE 8550:85503l

    Article  Google Scholar 

  20. 20.

    Matsushima K, Schimmel H, Wyrowski F (2003) Fast calculation method of optical diffraction on tilted planes by use of the angular spectrum of plane waves. J Opt Soc Am A 20(9):1755–1762

    Article  Google Scholar 

  21. 21.

    Kittler J, Illingworth J, Fglein J (1985) Threshold selection based on a simple image statistic. Comp Vis Graph Image Process 30(2):125–147

    Article  Google Scholar 

  22. 22.

    Ren YX, Lu RD, Gong L (2015) Tailoring light with a digital micromirror device. Annalen der Physik 527(7–8):447–470

    MathSciNet  Article  Google Scholar 

  23. 23.

    Falldorf C, Dankwart C, Glbe R, Lnemann B, Kopylow CV, Bergmann RB (2009) Holographic projection based on diamond-turned diffractive optical elements. Appl Opt 48:57825785

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the German Research Foundation (DFG) for funding the project DMD-Jet of the Priority Program SPP1476 (VO 530/48-2).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hamza Messaoudi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Messaoudi, H., Thiemicke, F., Falldorf, C. et al. Distortion-free laser beam shaping for material processing using a digital micromirror device. Prod. Eng. Res. Devel. 11, 365–371 (2017). https://doi.org/10.1007/s11740-017-0722-y

Download citation

Keywords

  • Laser beam shaping
  • Binary optics
  • Laser micro machining
  • Maskless processing