Production Engineering

, Volume 10, Issue 4–5, pp 519–528 | Cite as

Simulation and development of an active damper with robust μ-control for a machine tool with a gantry portal

  • E. Abele
  • G. PfeifferEmail author
  • B. Jalizi
  • A. Bretz
Machine Tool


Machine tools are generally used with process parameters that are as productive as possible yet stable. One way to raise productivity is to increase the process parameters like cutting speed or depth of cut (DOC). However, this approach will lead to process instabilities sooner or later. An increased rotational speed of the spindle will excite higher eigenfrequencies depending on the tools teeth count. In combination with higher cutting forces resulting from a deeper DOC, the process can become instable because of chatter or other oscillations and vibrations of the machine tool. This paper describes the identification of a critical eigenfrequency and corresponding eigenmode. An active damper was then developed to mitigate the negative effect this critical eigenfrequency has including a robust controller which protects the process from instabilities through changing eigenfrequencies caused by changing machine positions. It will also enable increased process parameters for a higher productivity of the machine tool. A simulation environment of the active damping system with a classic control and a robust \(\mu\)-control was developed. The damper was applied to the machine tool and tested.


Machine tools Active damper μ-control Robust control Simulation 



The research project (AiF-RP-No. K-F2012426PK0) was supported from the budget of the Federal Ministry of Economic Affairs through the Arbeitsgemeinschaft industrieller Forschungsvereinigungen Projekt GmbH (AiF) (Association of Industrial Research Organisations). We would like to thank all funding organisations.


  1. 1.
    Altintas Y, Stepan G, Merdol D, Dombovari Z (2008) Chatter stability of milling in frequency and discrete time domain. CIRP J Manuf Sci Technol 1:35–44CrossRefGoogle Scholar
  2. 2.
    Roth M (2009) Einsatz und Beurteilung eines aktiven Strukturdämpfers in einem Bearbeitungszentrum. Dissertation, DarmstadtGoogle Scholar
  3. 3.
    Weck M, Schulz A (2003) Adaptiver Reibungsdämpfer. wt Werkstattstech Online 7:535–540Google Scholar
  4. 4.
    Brecher C, Manoharan D, Klein W (2010) Active compensation for portal machines. Prod Eng Res Dev 4:255–260CrossRefGoogle Scholar
  5. 5.
    Drossel W-G, Wittstock V (2008) Adaptive spindle support for improving machining operations. CIRP Ann Manuf Technol 57:395–398CrossRefGoogle Scholar
  6. 6.
    Denkena B, Gümmer O (2012) Process stabilization with an adaptronic spindle system. Prod Eng Res Dev 6:484–492Google Scholar
  7. 7.
    Monnin J, Kuster F, Wegener K (2014) Modeling errors influencing active structural methods for chatter mitigation in milling process. Procedia CIRP 14:494–499CrossRefGoogle Scholar
  8. 8.
    Brecher C, Schauerte G, Merz M (2007) Modeling and simulation of adaptronic drilling tool axes as the basis of control design. Prod Eng Res Dev 1:297–301CrossRefGoogle Scholar
  9. 9.
    Bolsunovsky S, Vermel V, Gubanov G, Leontiev A (2013) Reduction of flexible workpiece vibrations with dynamic support realized as tuned mass damper. Procedia CIRP 8:230–234CrossRefGoogle Scholar
  10. 10.
    Law M, Wabner M, Colditz A, Kolouch M, Noack S, Ihlenfeldt S (2015) Active vibration isolation of machine tools using an electro-hydraulic actuator. CIRP J Manuf Sci Technol 10:36–48CrossRefGoogle Scholar
  11. 11.
    Uhlmann E, Eßmann J, Wintering J-H (2012) Design- and control-concept for compliant machine tools based on controller integrated models. CIRP Ann Manuf Technol 61:347–350CrossRefGoogle Scholar
  12. 12.
    van Dijk NJM, van de Wouw N, Doppenberg EJJ, Oosterling HAJ, Nijmeijer H (2012) Robust active chatter control in the high-speed milling process. IEEE Trans Control Syst Technol 20(4):901–917CrossRefGoogle Scholar
  13. 13.
    Chen Z, Zhang H-T, Zhang X, Ding H (2013) Adaptive active chatter control in milling processes. J Dyn Syst Meas Control 136(2):021007-1-7CrossRefGoogle Scholar
  14. 14.
    Jalizi B (2014) Kompensation quasi-statischer und dynamischer Verlagerungen bei kompakten Portalfräsmaschinen. Dissertation, DarmstadtGoogle Scholar
  15. 15.
    Isermann R (2005) Mechatronic systems: fundamentals. Springer, HeidelbergGoogle Scholar
  16. 16.
    Waibel M (2013) Aktive Zusatzsysteme zur Schwingungsreduktion in Werkzeugmaschinen. Dissertation, Herbert-Utz-Verlag, MünchenGoogle Scholar
  17. 17.
    Zhou K, Doyle JC, Glover K (1996) Robust and optimal Control. Prentice Hall, Upper Saddle RiverzbMATHGoogle Scholar
  18. 18.
    Crepin P-Y (2003) Untersuchung zur Eignung eines robusten Filterentwurfs zur Inflight-Diagnose eines elektrohydraulischen Aktuators. Dissertation, DarmstadtGoogle Scholar
  19. 19.
    Sattler B (2001) Entwurf eines robusten, filterintegrierten Aktuatorreglers zur Erhöhung der Stabilitätsreserve bei der Dmpfung von Strukturschwingungen. Dissertation, DarmstadtGoogle Scholar
  20. 20.
    McFarlane DC, Keith G, Glover K (1989) Robust controller design using normalized coprime factor plant description. Springer, HeidelbergzbMATHGoogle Scholar
  21. 21.
    Doyle JC (1982) Analysis of feedback systems with structured uncertainties. IEE Proc 129:242–250MathSciNetCrossRefGoogle Scholar
  22. 22.
    Doyle JC (1985) Structured uncertainty in control system design. In: Proceedings of the IEEE conference on decision and control, pp 260–265Google Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2016

Authors and Affiliations

  1. 1.Institute of Production Management, Technology and Machine ToolsDarmstadtGermany

Personalised recommendations