Skip to main content
Log in

Statistical analysis of a model based product property control for sheet bending

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Fluctuations in semi-finished parts as well as the environmental conditions of a forming process cause uncertainties in the properties of the produced product. Controlling these uncertainties can be realized by using a quality feedback control. Since part properties are usually difficult to measure during a forming process, models of the machine and process characteristics are required. Models derived either from technological considerations or from statistical investigations can be used to predict product properties resulting from a process with specific properties of the semi-finished part. This paper describes the statistical analysis of an adaptive feed-forward model to compensate spring-back in a flexible sheet bending process. It is investigated whether the use of a process integrated measurement of semi-finished part properties, which are fed into the control model, leads to a significant improvement of product quality. The experiments were conducted on a flexible multi-purpose forming machine with the availability of a three-degrees-of-freedom ram motion, including an appropriate tooling system for flexible bending. The process was repeated for each class of the investigated semi-finished parts using the corresponding model parameters in order to generate the data sets for the statistical analysis. A probability density function estimated from the measurement data allows presuming a significant improvement of product quality. By the application of techniques of statistical testing theory, the non-randomness of the observed improvement is confirmed for the majority of testing fields. This leads to the conclusion, that the quality of forming processes, especially bending processes, can be enhanced by a process control based on a linear regression model considering the properties of the semi-finished part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hu J (2002) Mechanics of Sheet metal forming. Elsevier Butterworth-Heinemann, Oxford

    Google Scholar 

  2. Schneider W (2008) Applied Control Theory (in German), Praktische Regelungstechnik Ein Lehr- und Übungsbuch für Nicht-Elektrotechniker, 3. ed., Vieweg+Teubner, Wiesbaden

  3. Stelson KA, Gossard DC (1982) An adaptive pressbrake control using an elastic-plastic material model. J Eng Ind 104:389–393. doi:10.1115/1.3185847

    Article  Google Scholar 

  4. Chandra A (1987) Real-time identification and control of springback in sheet metal forming. J Eng Ind 109:265–273. doi:10.1115/1.3187128

  5. Tan Z, Persson B, Magnusson C (1992) An empiric model for controlling springback in V-die bending of sheet metals. J Mater Process Technol 34:449–455. doi:10.1016/0924-0136(92)90140-N

    Article  Google Scholar 

  6. Ferreira JA, Sun P, Grácio JJ (2006) Close loop control of a hydraulic press for springback analysis. J Mater Process Technol 177:377–381. doi:10.1016/j.jmatprotec.2006.03.177

    Article  Google Scholar 

  7. Mori K, Akita K, Abe Y (2007) Springback behaviour in bending of ultra-high-strength steel sheets using CNC servo press. Int J Mach Tools Manuf 47:321–325. doi:10.1016/j.ijmachtools.2006.03.013

    Article  Google Scholar 

  8. Wang J, Verma S, Alexander R, Gau J-T (2008) Springback control of sheet metal air bending process. J Manuf Process 10:21–27. doi:10.1016/j.manpro.2007.09.001

    Article  Google Scholar 

  9. Forcellese A, Gabrielli F, Ruffini R (1998) Effect of the training set size on springback control by neural network in an air bending process. J Mater Process Technol 80–81:493–500. doi:10.1016/S0924-0136(98)00122-8

    Article  Google Scholar 

  10. Inamdar MV, Date PP, Desai UB (2000) Studies on the prediction of springback in air vee bending of metallic sheets using an artificial neural network. J Mater Process Technol 108:45–54. doi:10.1016/S0924-0136(00)00588-4

    Article  Google Scholar 

  11. Bozdemir M, Gölcü M (2008) Artificial neural network analysis of springback in V bending. J Appl Sci 8:3038–3043

    Article  Google Scholar 

  12. Teimouri R, Baseri H, Rahmani B, Bakhshi-Jooybari M (2012) Modeling and optimization of spring-back in bending process using multiple regression analysis and neural computation. Int J Mater Form 7:1–12. doi:10.1007/s12289-012-1117-4

  13. Calmano S, Schmitt SO, Groche P (2013) Prevention of over-dimensioning in light-weight structures by control of uncertainties during production. In: Liewald M (ed) International conference on “new developments in forging technology”. MAT INFO Werkstoff-Informationsgesellschaft mbH, Fellbach, pp 313–317

    Google Scholar 

  14. Oehler G (1963) Bending in presses (in German), Biegen unter Pressen. Carl Hanser Verlag, München

  15. Sachs G (1951) Principles and methods of sheet-metal fabricating. Reinhold Pub. Corp., New York

  16. Chen P, Koç M (2007) Simulation of springback variation in forming of advanced high strength steels. J Mater Process Technol 190:189–198. doi:10.1016/j.jmatprotec.2007.02.046

    Article  Google Scholar 

  17. Cheng PJ, Lin SC (2000) Using neural networks to predict bending angle of sheet metal formed by laser. Int J Mach Tools Manuf 40:1185–1197. doi:10.1016/S0890-6955(99)00111-X

    Article  Google Scholar 

  18. Bruni C, Forcellese A, Gabrielli F, Simoncini M (2006) Modelling of the rheological behaviour of aluminium alloys in multistep hot deformation using the multiple regression analysis and artificial neural network techniques. J Mater Process Technol 177:323–326. doi:10.1016/j.jmatprotec.2006.03.230

    Article  Google Scholar 

  19. Groche P, Scheitza M, Kraft M, Schmitt S (2010) Increased total flexibility by 3D Servo Presses. CIRP Ann Manuf Technol 59:267–270

    Article  Google Scholar 

  20. Avemann J, Calmano S, Schmitt S, Groche P (2014) Total flexibility in forming technology by Servo Presses. In: WGP Congress 2012—progress in production engineering, Trans Tech Publications, Berlin, Germany, pp 99–112

  21. Laboratory Equipment, Heraeus, 2008, Hanau, Germany. http://pt-labware.de/media/webmedia_local/media/shared/Laboratory_Equipment_en.pdf

  22. Bauer W, Ganschar O, Gerlach S, Hämmerle M, Krause T, Schlund S (2014) Industry 4.0—a more flexible und reactive production (in German), Industrie 4.0—flexiblere und reaktionsfähigere Produktionsarbeit, wt Werkstattstechnik online, 3:134–138

  23. Hoffmann D (2012) Industry 4.0 enables the Smarte Factory (in German), Mit Industrie 4.0 entsteht die smarte Fabrik, automotive IT

  24. Werner S, Popitz D, Trautmann A (2013) Cellulare information systems (in German), Zellulare Informationssysteme, Productivity Management, vol 1, pp 29–32

  25. Fisher R (1925) Statistical methods for research workers. Oliver & Boyd, Edinburgh

    Google Scholar 

  26. Neyman J, Pearson ES (1928) On the use and interpretation of certain test criteria for purposes of statistical inference: Part I and II. Biometrika 20:175–240, 263–294

  27. Welch BL (1947) The generalization of Student’s problem when several different population variances are involved. Biometrica 34:28–35

    MATH  MathSciNet  Google Scholar 

  28. Bortz J (1999) Statistics for social scientists (in German), Statistik für Sozialwissenschaftler, Springer, Berlin, Heidelberg, New York

  29. Satterthwaite FE (1946) An approximate distribution of estimates of variance components. Biom Bull 2:110–114

    Article  Google Scholar 

Download references

Acknowledgments

The results of this paper are achieved in the Collaborative Research Centre SFB 805 “Control of uncertainty in load-carrying mechanical systems” in subprojects “A8: Propagation of Uncertainty” and “B2: Forming—Production families at equal quality”. The authors wish to thank the Deutsche Forschungsgemeinschaft (DFG) for funding and supporting the SFB 805.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Calmano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Groche, P., Calmano, S., Felber, T. et al. Statistical analysis of a model based product property control for sheet bending. Prod. Eng. Res. Devel. 9, 25–34 (2015). https://doi.org/10.1007/s11740-014-0576-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-014-0576-5

Keywords

Navigation