Production Engineering

, Volume 8, Issue 5, pp 593–602 | Cite as

Friction analysis of alternative tribosystems for a foil free forming of stainless steel using strip drawing test: analysis of physicochemical interactions between coatings and lubricants

  • F. Klocke
  • D. TrauthEmail author
  • M. Terhorst
  • P. Mattfeld
Production Process


Forming of stainless steel sheets with stringent requirements on surface quality is currently realized using protective foils as a separating agent between the tools and the sheet metal. The protective foils are applied with special machines and need to be removed after the forming process or at the end customer. This approach goes along with economic disadvantages. Alternative tribological systems for foil free forming are insufficiently researched and not yet reliably applicable in a production process. The performed research work is based on experimental analyses investigating the physicochemical properties of selected lubricants with regard to the contact angle, the wetting characteristic, the cohesion strength, and intermolecular forces. Additionally, the surface free energy and the wetting envelope of selected coatings and the sheet metal are investigated. The interactions between the tribological properties of the lubricants and the coatings are evaluated performing a strip drawing test. Finally, the performed work discusses and derives basic mechanisms enabling a foil free forming based on friction coefficients from strip drawing.


Foil free forming Stainless steel Wetting envelope Cohesion strength Adhesion strength Contact angle Friction coefficient 



The authors would like to thank the European Union, Investing in our Future, European Regional Development Fund within the Initiative Ziel2.NRW for partly funding this research work. Further, we express our gratitude to the following industrial partners for their support in conducting the experiments cited in this paper: Eifeler Werkzeuge GmbH, Miele Cie. & KG, Raziol Zibulla & Sohn GmbH, Outokumpu Nirosta GmbH.


  1. 1.
    Anders A (2002) Cathodic arc plasma deposition. Vac Technol Coat 3:27–35 Google Scholar
  2. 2.
    Ampco Metal Deutschland GmbH (2014) Technical datasheet Ampco25.,
  3. 3.
    Bay N, Azushima A, Groche P, Ishibashi I, Merklein M, Morishita M, Nakamura T, Schmid S, Yoshida M (2010) Environmentally benign tribosystems for metal forming. CIRP Ann Manuf Technol 59(2):760–780CrossRefGoogle Scholar
  4. 4.
    Behrens B-A, Gaebel C-M (2013) Formability of an anti-fingerprint clear coating on satin stainless steel sheet metal. Prod Eng 7(2–3):275–281Google Scholar
  5. 5.
    Bischof C, Bauer A, Kapelle B, Possart W (1985) The effect of pretreatment of the metal surface on the bonding strength. Int J Adhes Adhes 5(2):97–102CrossRefGoogle Scholar
  6. 6.
    Bischof C, Bauer A (1987) Bedeutung der Oberflächen für das Kleben. DECHEMA Monographien 108:303–321Google Scholar
  7. 7.
    Bischof C, Bauer A, Kapelle R, Schulze R-D (1987) Chemische und Physikalische Einflussfaktoren auf die Haftung bei Metall-Polymer-Verbunden. In: Tagungsband Haftung als Basis für Stoffverbunde und Verbundwerkstoffe, Hrsg. Brockmann, W., DGM-Verlag, OberurselGoogle Scholar
  8. 8.
    Bobzin K, Bagcivan N, Goebbels N, Yilmaz K, Hoehn BR, Michaelis K, Hochmann M (2009) Lubricated PVD CrAlN and WC/C coatings for automotive applications. Surf Coat Technol 204:1097–1101CrossRefGoogle Scholar
  9. 9.
    Bobzin K, Bagcivan N, Theiss S, Yilmaz K (2010) Plasma coatings CrAlN and a-C: H for high efficient power train in automobile. Surf Coat Technol 205:1502–1507CrossRefGoogle Scholar
  10. 10.
    Bobzin K, Bagcivan N, Theiss S, Yilmaz K (2011) Hydrogen content variation for enhancing the lubricated tribological performance of DLC coatings with ester. Surf Coat Technol 205:89–93CrossRefGoogle Scholar
  11. 11.
    BSH Bosch und Siemens Hausgeräte GmbH (2014) Liefervorschrift für Tiefzieh-, Stanz- und Biegewerkzeuge ML-3.
  12. 12.
    Dorinson A, Ludema K-C (1985) Mechanics and chemistry in lubrication. In: Tribology Series 9, Elsevier, AmsterdamGoogle Scholar
  13. 13.
    Dupré A (1869) Theorie Mechanique de la Chaleur. Gauthier-Villars, Paris, p 369Google Scholar
  14. 14.
    Eifeler Werkzeuge GmbH (2014) TiCN Datasheet Online.,
  15. 15.
    Eifeler Werkzeuge GmbH (2014) TiCN+MoST™Datasheet Online,
  16. 16.
    Eifeler Werkzeuge GmbH (2014) Sucaslide\(^{\textregistered }\) Datasheet Online:,
  17. 17.
    Eifeler Werkzeuge GmbH (2014) Sucaslide\(^{\textregistered }\) Biocompatibility certificate by BSL Bioservice Scientific Laboratories GmbH Munich. Online:,
  18. 18.
    Europäisches Parlament, Rat: Verordnung (EG) Nr. 1907/2006 des Europäischen Parlaments und Rates (2006)Google Scholar
  19. 19.
    Fowkes FM (1964) Attractive forces at interfaces. Ind Eng Chem Res 56:40–52CrossRefGoogle Scholar
  20. 20.
    Gebauer H (2006) Verfahren zum Tiefziehen eines flächigen Blechzuschnitts mit einem Tiefziehwerkzeug. European patent application DE 10 2005 0236 158 A1 (23.11.2006). BSH Bosch und Siemens Hausgeräte GmbHGoogle Scholar
  21. 21.
    Gleich H (2004) Zusammenhang zwischen Oberflächenenergie und Adhäsionsvermögen von Polymerwerkstoffen am Beispiel von PP und PBT und deren Beeinflussung durch die Niederdruck-Plasmatechnologie. Universität Duisburg-Essen, PhD-ThesisGoogle Scholar
  22. 22.
    Hartner E (2010) Verfahren zum Umformen eines flächigen Blechzuschnitts sowie zugehöriges Hausgerät. European patent application DE 10 2008 043 359 A1 (12.05.2010). BSH Bosch und Siemens Hausgeräte GmbHGoogle Scholar
  23. 23.
    Doc ICFG (1996) Lubrication aspects in cold forging of aluminum and aluminum alloys. WIRE 1:1–12Google Scholar
  24. 24.
    Kaelble DH (1970) Dispersion-polar surface tension properties of organic solids. J Adhes 2(2):66–81 Google Scholar
  25. 25.
    Kim HY, Hwang BC, Bae WB (2002) An experimental study on forming characteristics of pre-coated sheet metals. J Mater Process Technol 120:290–295CrossRefGoogle Scholar
  26. 26.
    Leroy C, Schiffmann KI, van Acker K, von Stebut J (2005) Ball cratering—an efficient tool for 3 body microabrasion of coated systems. Surf Coat Technol 200(1–4):153–156CrossRefGoogle Scholar
  27. 27.
    Lin K-L, Hwang M-Y, Wu C-D (1996) The deposition and wear properties of cathodic arc plasma deposition TiAIN deposits. Mater Chem Phys 46(1):77–83CrossRefGoogle Scholar
  28. 28.
    Meyer D, Kruse D, Bobe A, Goch G, Brinksmeier E (2010) Nondestructive characterization of the surface integrity of cold surface hardened components. Prod Eng 4(5):443–449CrossRefGoogle Scholar
  29. 29.
    Owens D, Wendt R (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747CrossRefGoogle Scholar
  30. 30.
    Paipetis A-A, Gdoutos E-E, Zaira P (2003) Recent advances in composite materials. Springer, New YorkGoogle Scholar
  31. 31.
    Rabel W (1971) Einige Aspekte der Benetzungstheorie und ihre Anwendung auf die Untersuchung und Veränderung der Oberflächeneigenschaften von Polymeren. Farbe und Lack 77(10):997–1005Google Scholar
  32. 32.
    Del Rio OI, Neumann AW (1997) Axisymmetric drop shape analysis: computational methods for the measurement of interfacial properties from the shape and dimensions of pendant and sessile drops. J Colloid Interface Sci 196(2):136–147CrossRefGoogle Scholar
  33. 33.
    Schrader M-E (1995) Young–Dupre revisited. Langmuir 11:3583–3589CrossRefGoogle Scholar
  34. 34.
    Tekkaya AE, Kleiner M, Biermann D, Hiegemann L, Rausch S, Franzen V, Kwiatkowski L, Kersting P (2013) Friction analysis of thermally sprayed coatings finished by ball burnishing and grinding. Prod Eng 7(6):601–610 Google Scholar
  35. 35.
    Voss E (2010) Flexibilität in der PVD-Technologie. Werkzeug Technik 117:54–55Google Scholar
  36. 36.
    Wang D-Y, Chang C-L, Wong K-W, Li Y-W, Ho W-Y (1999) Improvement of the interfacial integrity of (Ti, Al)N hard coatings deposited on high speed steel cutting tools. Surf Coat Technol 120(1):388–394CrossRefGoogle Scholar
  37. 37.
    Weidel S, Engel U, Merklein M, Geiger M (2010) Basic investigations on boundary lubrication in metal forming processes by in situ observation of the real contact area. Prod Eng 4(2–3):107–114Google Scholar
  38. 38.
    Young T (1805) An Essay on the Cohesion of Fluids. Philos Trans R Soc 95:65–87CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2014

Authors and Affiliations

  • F. Klocke
    • 1
  • D. Trauth
    • 1
    Email author
  • M. Terhorst
    • 1
  • P. Mattfeld
    • 1
  1. 1.Laboratory for Machine Tools and Production Engineering (WZL) RWTH Aachen UniversityAachenGermany

Personalised recommendations