Production Engineering

, Volume 8, Issue 1–2, pp 51–61 | Cite as

Energy dissipation in laser-based free form heading: a numerical approach

  • Mischa JahnEmail author
  • Heiko Brüning
  • Alfred Schmidt
  • Frank Vollertsen
Production Process


Cold forming generally allows the fast generation of parts with very low tolerances. In addition, mechanical properties are improved, if work hardening materials are used. Transferring the cold forming process to micro range leads to a decrease in the maximum achievable upset ratio so that the forming process becomes inefficient. Therefore, a laser-based free form heading process has been developed to generate preforms which can be calibrated in a secondary cold forming step. The achievable upset ratios reach values of several hundreds instead of 2.1 which is common for single step mechanical upsetting. In this article, heat losses arising in the material accumulation process using laser-based free form heading are analyzed and discussed. For this purpose, the process is modeled within the framework of continuum mechanics and simulated by a finite element method. By using a numerical approach, a systematic study on heat losses is performed in order to identify the influence of radiation, heat transfer due to convection and thermal conduction during laser irradiation time. The simulation results, which are validated with experimental data, show that the radiation is the most important mechanism reducing the efficiency of the accumulation process.


Laser micro machining Micro forming Miniaturization Finite element simulation 



The authors gratefully acknowledge the financial support by the DFG (German Research Foundation) for the subproject A3 within the Collaborative Research Center (CRC) 747 “Mikrokaltumformen - Prozesse, Charakterisierung, Optimierung”. Further, we want to thank the AG Bänsch from the University of Erlangen-Nürnberg for cooperation.


  1. 1.
    Bristeau MO, Glowinski R, Periaux J (1987) Numerical methods for the Navier–Stokes equations. Application to the simulation of compressible and incompressible flows. Comput Phys Rep 6:73–188CrossRefGoogle Scholar
  2. 2.
    Brüning H, Vollertsen F (2012) Self-aligning capability of laser based free form heading process. In: Proceedings of 11th international scientific conference MMA—advanced production technologies, pp 427–430Google Scholar
  3. 3.
    Bänsch E (2001) Finite element discretization of the Navier–Stokes equations with a free capillary surface. Numer Math 88(2):203–235CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bänsch E, Paul J, Schmidt A (2013) An ALE finite element method for a coupled Stefan problem and Navier–Stokes equations with free capillary surface. Int J Numer Methods Fluids 71:1282–1296CrossRefGoogle Scholar
  5. 5.
    Dausinger F (1995) Strahlwerkzeug Laser: Energieeinkopplung und Prozesseffektivität. B. G. TeubnerGoogle Scholar
  6. 6.
    Eichenhüller B, Engel U, Geiger M (2010) Microforming and investigation of parameter interactions. Prod Eng 4(2–3):135–140CrossRefGoogle Scholar
  7. 7.
    Elliot CM (1981) On the finite element approximation of an elliptic variational inequality arising from an implicit time discretization of the Stefan problem. IMA J Numer Anal 1:115–125CrossRefMathSciNetGoogle Scholar
  8. 8.
    Gale W, Totemeier T (2003) Smithells metals reference book. Elsevier Science, Amsterdam Google Scholar
  9. 9.
    Geiger M, Kleiner M, Eckstein R, Tiesler N, Engel U (2001) Microforming. CIRP Ann Manuf Technol 50(2):445–462CrossRefGoogle Scholar
  10. 10.
    Jahn M, Luttmann A, Schmidt A (2012) A FEM simulation for solid-liquid-solid phase transitions during the production of micro-components. In: Proceedings of 11th international scientific conference MMA—advanced production technologiesGoogle Scholar
  11. 11.
    Jahn M, Luttmann A, Schmidt A, Paul J (2012) Finite element methods for problems with solid-liquid-solid phase transitions and free melt surface. PAMM 12(1):403–404CrossRefGoogle Scholar
  12. 12.
    Jahn M, Schmidt A (2012) Finite element simulation of a material accumulation process including phase transitions and a capillary surface. Tech. Rep. 12-03, ZeTeM, BremenGoogle Scholar
  13. 13.
    Messner A (1998) Kaltmassivumformung metallischer Kleinstteile: Werkstoffverhalten, Wirkflächenreibung, Prozeßauslegung. Fertigungstechnik—Erlangen, MeisenbachGoogle Scholar
  14. 14.
    SA LM (2013) Stahl 1.4301. Tech. Rep. 2013/01, Lamineries MATTHEY SA, Lamineries MATTHEY SA, CH-2520 La NeuvevilleGoogle Scholar
  15. 15.
    Sakkiettibutra J, Vollertsen F (2009) Größeneffekte beim Stauchmechanismus am Beispiel geometrisch skalierter Brückenaktuatoren. Größeneinflüsse bei Fertigungsprozessen, BIAS Verlag, Bremen, pp 97–116Google Scholar
  16. 16.
    Stephen A, Brüning H, Vollertsen F (2011) Fokuslagensteuerung beim laserbasierten Stoffanhäufen. In: 5. Kolloquium Mikroproduktion und Abschlusskolloquium SFB 499, KIT Scientific Publishing, Karlsruhe, pp 155–160Google Scholar
  17. 17.
    Stephen A, Vollertsen F (2011) Influence of the rod diameter on the upset ratio in laser-based free form heading. Steel Research Int., Special Edition: 10th international conference on technology of plasticity (ICTP) pp 220–223Google Scholar
  18. 18.
    Vollertsen F (2013) Micro metal forming. Lecture notes in production engineering. Springer, LondonGoogle Scholar
  19. 19.
    Vollertsen F, Walther R (2008) Energy balance in laser based free form heading. CIRP Ann 57:291–294CrossRefGoogle Scholar
  20. 20.
    Walther R (2009) An enhanced model for energy balance in laser-based free form heading. J Micromech Microeng 19:1–6CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2013

Authors and Affiliations

  • Mischa Jahn
    • 1
    Email author
  • Heiko Brüning
    • 2
  • Alfred Schmidt
    • 1
  • Frank Vollertsen
    • 2
  1. 1.Zentrum für Technomathematik (ZeTeM)Universität BremenBremenGermany
  2. 2.Bremer Institut für angewandte Strahltechnik (BIAS)BremenGermany

Personalised recommendations