Steps towards a protection system for machine tool main spindles against crash-caused damages

Abstract

High productivity and availability of machining centers can only be achieved by avoiding unplanned machine downtimes. Machine failures induced by wear can be coped with by implementing preventive and condition-based maintenance strategies so that downtimes are as short as possible. In contrast, machine damages caused by collisions cannot be avoided by these strategies, but only fixed afterwards by reactive maintenance, leading to high repair costs and long machine downtimes. This article presents a new approach for the avoidance of damages to the main spindle unit caused by collisions in machining centers. The mechanical components of this protection system enable the controlled reversible decoupling of the main spindle from the machine structure in case of exceedance of an adjustable force limit. Decoupling leads to a reduction of the whole machine stiffness, resulting in the decrease of the acting collision force. Consequently, all machine components in the collision’s force flux are protected against overload and damage. Once a collision occurred, a general method is shown, where the spindle and its collision objects are separated automatically by the machine’s numerical control. Due to the reversible decoupling mechanism of the protection system, the described retreat strategy eases the handling after a collision for the machine operator.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Gebeshuber R (2008) Der formen- und Werkzeugbau im Wandel der Zeit—Entwicklung und Innovationen inkl. Praxis-Fallbeispiel: “Vom Einzelfertiger zum Weltmarktführer”. Verlag Dr. Müller

  2. 2.

    Abele E, Reinhart G (2011) Zukunft der Produktion—Herausforderungen, Forschungsfelder, Chancen. Carl Hanser, Munich

    Google Scholar 

  3. 3.

    Abele E, Dervisopoulos M, Kreis M (2006) Beeinflussbarkeit von Lebenszykluskosten durch Wissensaustausch—Produzieren mit Blick auf die Lebenszykluskosten. wt Werkstattstechnik online, 96 (7/8):447–454

  4. 4.

    Metzele M (2008) Zustandsorientierte Instandhaltung von schnelllaufenden Werkzeugmaschinen-Hauptspindeln. Dissertation, RWTH Aachen University

  5. 5.

    Abele E, Korff D (2011) Avoidance of collision caused spindle damages—challenges, methods and solutions for high dynamic machine tools. Ann CIRP 60(1):425–428

    Article  Google Scholar 

  6. 6.

    Rehling S (2009) Technologische Erweiterung der simulation von NC-Fertigungsprozessen. Dissertation, Leibniz University Hannover

  7. 7.

    Dietrich B (2007) Maschinenintegrierte Bauteillageerkennung zur Kollisionsprävention mittels skalierbarer Mehrkamerabildverarbeitung. Dissertation, RWTH Aachen University

  8. 8.

    Altintas Y, Brecher C, Weck M, Witt S (2005) Virtual machine tool. Ann CIRP 54(2):115–138

    Article  Google Scholar 

  9. 9.

    Siart U (2011) Spindelkollisionsschutz auf Radarbasis. Conference paper, Ott-Spanntechnik GmbH Technologietagung, Lengenwang

  10. 10.

    Dennig H-J (2009) Entwicklung einer schnell schaltenden Bremse und Kupplung für Linearbewegungen zum Überlastschutz in Werkzeugmaschinen. Dissertation, University Stuttgart

  11. 11.

    Byrne G, O’Donnell GE (2007) An integrated force sensor solution for process monitoring of drilling operations. Ann CIRP 56(1):89–92

    Article  Google Scholar 

  12. 12.

    Ebeling W (2002) Wirksamer schutz vor Kollisionen. Werkstatt Betrieb 135(10):58–59

    Google Scholar 

  13. 13.

    Brecher C, Rudolf T (2006) Kontakterkennungsbasierte kollisionsüberwachung—sicher produzieren durch kollisionsschutzsysteme. Conference paper, simulationstechnik in der produktion, ABS-Treffen 2005, Düsseldorf

  14. 14.

    Rudolf T, Brecher C, Possel-Dölken F (2007) Contact-based collision detection—a new approach to avoid hard collisions in machine tools. Conference paper, international conference on smart machining systems, Gaithersburg

  15. 15.

    Chr. Mayr GmbH + Co. KG (2011) EAS axial—Überlastsicherung für lineare Bewegungen. Catalogue

  16. 16.

    Maschinenfabrik Berthold Hermle AG (2011) C20—the dynamic, product description. Catalogue

  17. 17.

    Weck M, Brecher C (2006) Werkzeugmaschinen 3—mechatronische systeme, vorschubantriebe, prozessdiagnose, 6th edn. Springer, Berlin

    Google Scholar 

  18. 18.

    Tüllmann U (1999) Das Verhalten axial verspannter, schnelldrehender Schrägkugellager. Dissertation, RWTH Aachen University

  19. 19.

    Schaeffler Technologies GmbH & Co. KG (2011) Hochgenauigkeitslager—high precision bearings. Catalogue

  20. 20.

    DIN ISO 76 (2009) Wälzlager—statische tragzahlen. DIN Deutsches Institut für Normung e.V.

  21. 21.

    Brändlein J, Eschmann P, Hasbargen L, Weigand K (1995) Die Wälzlagerpraxis, 3rd edn. Vereinigte Fachverlage, Mainz

    Google Scholar 

  22. 22.

    Harris TA, Kotzalas MN (2007) Essential concepts of bearing technology, 5th edn. CRC Press, Boca Raton, FL

    Google Scholar 

  23. 23.

    Rombach M, Hollstein T (1995) Untersuchungen zum mechanischen Verhalten von Siliciumnitrid in einem Kugel-Platte-Kontakt. Materialwissenschaften Werkstofftechnik 26(4):276–282

    Article  Google Scholar 

  24. 24.

    Strutzke A (2008) CNC-Werkzeugmaschinen mit Kollisionskontrolle. Metav J 2008:60–63

    Google Scholar 

  25. 25.

    da Silva VD (2005) Mechanics and strength of materials. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

We extend our sincere thanks to the Federal Ministry of Economics and Technology (BMWi) and to the AiF—Otto von Guericke e.V. for their generous support of the work described in this paper. Its development was accomplished in cooperation with Jakob Antriebstechnik GmbH, Kleinwallstadt.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Abele.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abele, E., Brecher, C., Gsell, S.C. et al. Steps towards a protection system for machine tool main spindles against crash-caused damages. Prod. Eng. Res. Devel. 6, 631–642 (2012). https://doi.org/10.1007/s11740-012-0422-6

Download citation

Keywords

  • Machine tools
  • Main spindle units
  • Collision protection
  • Downtime reduction