Skip to main content
Log in

Self-optimizing assembly of laser systems

  • Assembly
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Laser assembly can be a tedious task if performed manually. Especially if miniaturization of the laser is desired, robot-based assembly can greatly improve quality, performance and throughput, while self-optimization is regarded as a strategy to reduce planning efforts and increase the robustness of the assembly. An automated laser assembly system has been developed together with a concept to increase the autonomy through a multi-agent system control structure. The multi-agent system allows assembly steps like sequence planning, measurement of components and deviations, selection of components, soldering elements onto a carrier plate and active resonator alignment to be handled by the system itself and enables the assembly system to uniquely plan every laser system and execute its assembly within a flexible robot-based assembly cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Schuh G, Gottschalk S, Kupke D (2008) Individualisierte Produktion—Flexible Konfigurationslogik zur Gestaltung von integrativen Produktionssystemen. wt Werkstatttechnik online 4–2008, p 2

  2. Lotter B, Wiendahl H-P (2006) Montage in der industriellen Produktion, Springer, Berlin, S.3

  3. Westkämper E (2006) Modulare Produkte—Modulare Montage, wt Werksttatttechnik online 08–2001, S.479

  4. Schmitt R, Pavim A, Brecher C, Pyschny N, Loosen P, Funck M, Dolkemeyer J, Morasch V (2008) Flexible automatisierte Montage von Festkörperlasern. wt Werkstattstechnik online 11/12, pp 955–960

  5. Dolkemeyer J, Funck M, Morasch V, Schnitzler C, Loosen P (2009) Soldering techniques for the assembly of high power solid-state lasers. CLEO Eur

  6. Funck M, Loosen P (2008) Estimating the performance gain of selectively assembled optical systems. 53rd Internationales Wissenschaftliches Kolloquium, Proceedings

  7. Funck M, Loosen P (2009) Statistical simulation of selectively assembled optical systems. Optical modelling and performance predictions. In: Proceedings SPIE, vol 7427

  8. Frank U et al (2004) Selbstoptimierende Systeme des Maschinenbaus: Definition und Konzepte. HNI-Verlagsschriftenreihe, Paderborn

    Google Scholar 

  9. Dangelmaier W, Klöpper B (2009) Verhaltungsplanung für mechatronische Systeme—Planung als Funktion in selbstoptimierenden Systemen. wt Werkstattstechnik online, Jahrgang 99, Heft 3, pp 123–129

  10. Beierle C, Kern-Isberner G. (2006) Methoden wissensbasierter Systeme Grundlagen—Algorithmen—Anwendungen. Vieweg

  11. Lämmel U, Cleve J (2008) Künstliche Intelligenz. Carl Hanser Verlag, München

    Google Scholar 

  12. Schmitt R, Pavim A (2010) Eine Strategie zur dynamischen Planung und Durchführung der Montage von Lasersystemen. 7. Paderborner Workshop—Entwurf mechatronischer Systeme, Band 272, pp 99–114

  13. Marco Mendes J, Leitão P, Restivo F, Colombo AW (2009) Service-oriented agents for collaborative industrial automation and production systems. Lecture notes in computer science, vol 5696, pp 13–24

  14. Monostori L, Váncza J, Kumara SRT (2006) Agent-based systems for manufacturing. CIRP Ann Manuf Technol 55:697–720

    Article  Google Scholar 

  15. Teti R, Kumara SRT (1997) Intelligent computing methods for manufacturing systems. CIRP Ann Manuf Technol 46:629–652

    Article  Google Scholar 

  16. Russel SJ, Norvig P (2003) Artificial intelligence: a modern approach. Prentice hall series in artificial intelligence. Prentice Hall/Prentice Education, Englewood Cliffs

    Google Scholar 

  17. Jennings NR, Sycara K, Wooldridge M (1998) A roadmap of agent research and development. autonomous agents and multi-agent systems 1, pp 275–306

  18. Jennings N (2000) On agent-based software engineering. Artif Intell 117:277–296

    Article  MATH  Google Scholar 

  19. Brecher C, Pyschny N, Loosen P, Funck M, Morasch V, Schmitt R, Pavim A (2009) Self-optimising flexible assembly systems. Workshop on Self-X in mechatronics and other engineering applications, Paderborn, pp 23–38

  20. Wooldridge M (2009) An Introduction to multiagent systems. Wiley, London

    Google Scholar 

  21. Göhner P, Urbano PGA, Wagner T (2004) Softwareagenten—Einführung und Überblick über eine Alternative Art der Softwareentwicklung. Teil 3: Agentensysteme in der Automatisierungstechnik. Automatisierungstechnische Praxis 46(2), pp 42–51

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for the support within the Cluster of Excellence “Integrative Production Technology in High-Wage Countries” at RWTH Aachen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Funck.

Additional information

Alberto Pavim—Scholarship holder of the Brazilian CNPq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loosen, P., Schmitt, R., Brecher, C. et al. Self-optimizing assembly of laser systems. Prod. Eng. Res. Devel. 5, 443–451 (2011). https://doi.org/10.1007/s11740-011-0328-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-011-0328-8

Keywords

Navigation