Skip to main content
Log in

Quasi-static chip formation of intermetallic titanium aluminides

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

As a result of the development of new materials for high temperature applications the potential for mass reduction and increased process temperatures is constantly being expanded. Intermetallic γ-TiAl alloys can meet these demands to a large extent. The properties necessary for these applications have an adverse effect on the machinability however and render intermetallic titanium aluminides as difficult to machine materials. Cutting operations tend to produce damaged surfaces which are unsuitable for the intended applications. As the basis for a reliable and economic cutting technology, the chip formation of the intermetallic TiAl alloy TNBV5 has been examined in quasi-static cutting experiments. Observations showed that increased workpiece temperatures lead to a transition of the chip formation from segmented to continuous chips. By decreasing the undeformed chip thickness crack-free surfaces could be produced at low workpiece temperatures. In this case other mechanisms than the thermal activation of slip systems must be the reason for the observed large plastic deformations. The theory that hydrostatic pressure leads to this behavior is substantiated by the results of finite element simulations. This offers the possibility for damage free machining at lower cutting speeds, thus enabling the use of conventional tool materials at an acceptable tool life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schubert F (2004) Heißes Eisen. In: Das Industriemagazin. 49:26–29

  2. Appel F, Oehring M (2002) g-Titanaluminid-Legierungen: Legierungsentwicklung und Eigenschaften. In: Peters M, Leyens Ch (Hrsg): Titan und Titanlegierungen, Köln, pp 39–103

  3. Knippscheer S, Frommeyer G (2000) Properties of low cost TiAl automotive valves produced by cold wall induction melting and permanent mold centrifugal casting. In: Titanium ′99, Proceedings of the 9th world conference on Titanium, St. Petersburg, Russia, pp 320–327

  4. Smarsly W, Singheiser L (1994) Potential of intermetallics to replace superalloys for advanced operation conditions in gas turbines. In: Counsouradis D et al (eds) Materials for advanced power engineering, part II. Kluwer, pp 1731–1756

  5. Appel F, Brossmann U, Christoph U, Eggert S, Janschek P, Lorenz U, Müllauer J, Oehring M, Paul DH (2000) Recent progress in development of gamma titanium aluminides. Adv Eng Mater 11:699–720

    Google Scholar 

  6. Appel F, Oehring M (2003) Entwicklung von TiAl-Legierungen der 3. Generation. In: Dietrich M (ed) Titan-Aluminid-Legierungen—Eine Werkstoffgruppe mit Zukunft, Jülich, pp 85–91

  7. Kumpfert J, Leyens C (2002) Orthorhombische Titanaluminide: Schadenstolerante intermetallische Werkstoffe. In: Peters M, Leyens C (eds) Titan und Titanlegierungen, Köln, pp 105–137

  8. Klocke F, Stegen A (2006) Dem spröden Stoff die Spanbildung beibringen. In: Werkstatt und Betrieb. 10:64–67

  9. Uhlmann E, Herter S (2006) Studies on conventional cutting of intermetallic nickel and titanium aluminides. In: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 220(9), pp 1391–1398

  10. Uhlmann E, Frommeyer G, Herter S, Knippscheer S, Lischka JM (2003) Studies on the conventional machining of TiAl based alloys. In: Lütjering G, Albrecht J (eds) Ti-2003 science and technology. Proceedings of the 10th world conference on titanium. 4:2293–2300

  11. Herter S (2009) Spanbildung und Randzonenbeeinflussung beim Drehen intermetallischer Titanaluminide. Dissertation Technische Universität Berlin (in preparation)

  12. Clos R, Lorenz H, Schreppel U, Veit P (2005) Verformungslokalisierung und Spanbildung in Inconel 718. In: Tönshoff HK, Hollmann F (eds) Hochgeschwindigkeitsspanen. Wiley, pp 426–445

  13. Gente A (2002) Spanbildung von TiAl6V4 und Ck45N bei sehr hohen Schnittgeschwindigkeiten. Dissertation. Technische Universität Braunschweig

  14. Clemens H, Kestler H (2000) Processing und applications of intermetallic γ-TiAl- based alloys. Adv Eng Mater 2(9):551–570

    Article  Google Scholar 

  15. Knippscheer S (2007) Entwicklung und Charakterisierung von intermetallischen Leichtbaulegierungen auf Basis von TiAl-(Cu, Mo, Cr, Nb, Si). Dissertation, Universität Duisburg-Essen

  16. Rommerskirchen M (1997) Struktur und Eigenschaften feinkristalliner γ-TiAl-Legierungen. Dissertation, RWTH Aachen

  17. Westbrook JH, Fleischer RL (2000) Basic mechanical properties and lattice defects of intermetallic compounds. Wiley, London

    Google Scholar 

  18. Sparka UAH (1998) Verformungs- und Verfestigungsverhalten in ein- und zweiphasigen Titanaluminid-Legierungen. Dissertation, Universität Hamburg

  19. Tönshoff HK, Denkena B (2004) Spanen Grundlagen. Springer, 2. Auflage

  20. Tönshoff HK, Denkena B, Ben Amor R, Ostendorf A, Stein J, Hollmann C, Kuhlmann A (2005) Spanbildung und Temperaturen beim Spanen mit hohen Geschwindigkeiten. In: Tönshoff HK, Hollmann F (eds) Hochgeschwindigkeitsspanen. Wiley, pp 1–40

  21. Kármán Th (1911) Festigkeitsversuche unter allseitigem Druck. In: Zeitschrift des Vereins Deutscher Ingenieure. 42(55):224–235

  22. Tönshoff HK, Arendt C, Ben Amor R (2000) Cutting of hardened steel. Ann CIRP 49:547–566

    Article  Google Scholar 

  23. Denkena B, Jivishov V (2005) Größeneinflüsse auf die Spanbildung, Zerspankräfte und Eigenspannungen beim Drehen—Experiment und Simulation. In: Vollertsen F (Hrsg) Prozessskalierung. Strahltechnik, vol 27, BIAS, Bremen, pp 285–298

  24. Albrecht P (1960) New developments in the theory of the metal-cutting process—part I, the ploughing process in metal cutting. Trans ASME J Eng Industry 82:348–358

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the German Science Foundation (DFG). We would also like to thank the staff of the German High-Performance Computer Center North (HLRN) for the allocation of calculating time contingents and for the continuous presence as well as the support in the solution of problems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Gerstenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhlmann, E., Herter, S., Gerstenberger, R. et al. Quasi-static chip formation of intermetallic titanium aluminides. Prod. Eng. Res. Devel. 3, 261–270 (2009). https://doi.org/10.1007/s11740-009-0166-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-009-0166-0

Keywords

Navigation