Advertisement

Production Engineering

, Volume 3, Issue 1, pp 111–120 | Cite as

Modelling and simulation of process: machine interaction in grinding

  • J. C. Aurich
  • D. Biermann
  • H. Blum
  • C. Brecher
  • C. Carstensen
  • B. Denkena
  • F. Klocke
  • M. Kröger
  • P. Steinmann
  • K. Weinert
Machine Tool

Abstract

This article presents an overview of current simulation methods describing the interaction of grinding process and grinding machine structure, e.g., vibrations, deflections, or thermal deformations. Innovative process models which describe the effects of the grinding wheel–workpiece interaction inside the contact zone are shown in detail. Furthermore, simulation models representing the static and dynamic behaviour of a grinding machine and its components are discussed. Machine tool components with a high influence on the process results are modelled more detailed than those with low influence. The key issue of the paper is the coupling of process and machine tool models for predicting the interactions of process and machine. Several coupling methods are introduced and the improvements of the simulation results are documented. On the basis of the presented simulation approaches, grinding processes and machines can be designed more effectively resulting in higher workpiece quality and process stability.

Keywords

Process machine interaction Grinding Modelling Simulation 

Notes

Acknowledgments

This research work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) within the Priority Program 1180 “Prediction and Manipulation of Interaction between Structure and Process”. The authors wish to express their sincere thanks to further co-workers for their effort in helping to write this paper, namely A. Bouabid, M. Deichmüller, M. Duscha, P. Herzenstiel, F. Hoffmann, K. M. Popp, A. Rademacher, A. V. Scheidler, M. Weiss, and S. Wiedemann.

References

  1. 1.
    Brinksmeier E, Aurich JC, Govekar E, Heinzel C, Hoffmeister HW, Peters J, Rentsch R, Stephenson DJ, Uhlmann E, Weinert K, Wittmann M (2006) Advances in modeling and simulation of grinding processes. Ann CIRP 55(2):667–696CrossRefGoogle Scholar
  2. 2.
    Tönshoff HK, Peters J, Inasaki T, Paul T (1992) Modelling and simulation of grinding processes. Ann CIRP 41(2):677–688CrossRefGoogle Scholar
  3. 3.
    Hou ZB, Komanduri R (2003) On the mechanics of the grinding process---Part 1. Stochastic nature of the grinding process. Int J Mach Tools Manuf 43:1579–1593. doi: 10.1016/S0890-6955(03)00186-X CrossRefGoogle Scholar
  4. 4.
    Mackerle J (2003) Finite element analysis and simulation of machining: an addendum. A Bibliography (1996–2002). Int J Mach Tools Manuf 43:103–114. doi: 10.1016/S0890-6955(02)00162-1
  5. 5.
    Denkena B, Tracht K, Deichmüller M (2006) Wechselwirkungen zwischen Struktur und Prozess beim Werkzeugschleifen. wt Werkstattstechnik online, Jahrgang 96, H. 11/12Google Scholar
  6. 6.
    Zitt U-R (1999) Modellierung und Simulation von Hochleistungsschleifprozessen. Dissertation, University of KaiserslauternGoogle Scholar
  7. 7.
    Kienzle O (1954) Einfluss der Wärmebehandlung von Stählen auf die Hauptschnittkraft beim Drehen. Stahl Eisen 74:530–551Google Scholar
  8. 8.
    Braun O (2008) Konzept zur Gestaltung und Anwendung definiert gesetzter CBN Schleifscheiben. Dissertation, Universität KaiserslauternGoogle Scholar
  9. 9.
    Klocke F, Duscha M, Hoffmann F, Wegner H (2008) Prozess-Maschine-Wechselwirkung beim Pendel- und Schnellhubschleifen mit hochharten Schleifscheiben. Diamond Buisness 3(2008):52–60Google Scholar
  10. 10.
    Weinert K, Blum H, Jansen T, Mohn T, Rademacher A (2006) Angepasste Simulationstechnik zur Analyse NC-gesteuerter Formschleifprozesse. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 101(7–8):422–425Google Scholar
  11. 11.
    Weinert K, Blum H, Jansen T, Rademacher A (2007) Simulation based optimization of the NC-shape grinding process with toroid grinding wheels. Production engineering—research and development. Springer, Berlin, 1/3:245–252Google Scholar
  12. 12.
    Biermann D, Mohn T (2008) A geometric-kinematical approach for the simulation of complex grinding processes, CIRP Intelligent Computation in Manufacturing Engineering, Innovation and Cognitive Production Technology and Systems, Naples, ItalyGoogle Scholar
  13. 13.
    Neidhold T, Blochwitz T, Schreiber U (1999) Kooperation von Simulatoren durch Kopplung. 8. GMM-WS “Methoden und Werkzeuge zum Entwurf von Mikrosystemen”, 2.-3.12. 175–182, BerlinGoogle Scholar
  14. 14.
    Altintas Y, Brecher C, Weck M, Witt S (2005) Virtual machine tool. Ann CIRP. Keynote Pap STC-M 55(2)Google Scholar
  15. 15.
    Source: BLOHM Maschinenbau GmbH, Profimat MT 408 HTSGoogle Scholar
  16. 16.
    Weck M, Queins Q, Brecher C (2003) Coupled simulation of control loop and structural dynamics. Ann Ger Acad Soc Prod Eng X(2):105–110Google Scholar
  17. 17.
    Brecher C, Queins M, Witt S (2004) Coupled simulation of structural dynamics and control loops for the development of high-dynamic machine tools. In: Proceedings of NAFEMS seminar “Mechatronics in Structural Analysis”, WiesbadenGoogle Scholar
  18. 18.
    Werner K, Klocke F, Brinksmeier E (2003) Modelling and simulation of grinding processes. In: 1st European conference on grinding. Aachen, S. 8–1–8–27Google Scholar
  19. 19.
    Queins M (2005), Simulation des dynamischen Verhaltens von Werkzeugmaschinen mit Hilfe flexibler Mehrkörpermodelle. Dissertation, RWTH AachenGoogle Scholar
  20. 20.
    Hoffmann F, Brecher C (2006) Simulation dynamischer Bahnabweichungen von Werkzeugmaschinen. In: Proceedings of VDI conference “Elektrisch-mechanische Antriebssysteme”, Düsseldorf, VDIGoogle Scholar
  21. 21.
    Klocke F, Duscha M, Hoffmann F, Wegner H, Zeppenfeld C (2008) Machine–grinding wheel–workpiece interaction in speed stroke grinding. In: Proceedings of the 1st international conference on process machine interaction, pp 259–266Google Scholar
  22. 22.
    Herzenstiel P, Ching CY, Ricker S, Menzel A, Steinmann P, Aurich JC (2007) Interaction of process and machine during high-performance grinding—towards a comprehensive simulation concept. Int J Manuf Technol Manage 12(1/2/3):155–170CrossRefGoogle Scholar
  23. 23.
    Jansen T (2007) Entwicklung einer Simulation für den NC-Formschleifprozess mit Torusschleifscheiben. Dissertation, Technische Universität Dortmund, Essen, Band 43Google Scholar
  24. 24.
    Denkena B, Deichmueller M, Kroeger M, Panning L, Carstensen C, Kilian S (2007) Modeling and simulation of the process machine interaction during tool grinding processes. In: Proceedings of the 10th CIRP international workshop on modelling of machining operations, 27–28.8.2007, Reggio Calabria, ItalyGoogle Scholar
  25. 25.
    Popp KM, Kröger M, Deichmueller M, Denkena B (2008) Analysis of the machine structure and dynamic response of a tool grinding machine. In: Proceedings of the 1st international conference on process machine interaction, pp 299–307Google Scholar
  26. 26.
    Denkena B, Deichmueller M, Kröger M, Popp KM, Carstensen C, Schroeder A, Wiedemann S (2008) Geometrical analysis of the complex contact area for modeling the local distribution of process forces in tool grinding. In: Proceedings of the 1st international conference on process machine interaction, pp 289–298Google Scholar
  27. 27.
    Malkin S, Guo C (2007) Thermal analysis of grinding. CIRP Ann Manuf Technol 56(2):760–782CrossRefGoogle Scholar
  28. 28.
    Herzenstiel P, Bouabid A, Steinmann P, Aurich JC (2008) Experimental investigation and computational simulation of process–machine interactions during high-performance surface grinding. In: Proceedings of the 1st international conference on process machine interaction, pp 267–278Google Scholar
  29. 29.
    Weinert K, Blum H, Jansen T, Mohn T, Noyen M, Rademacher A (2007) Verfahrensspezifische Modellbildung für die Belastung beim Schleifen. In: Hoffmeister H-W, Denkena B: Jahrbuch Schleifen, Honen, Läppen und Polieren, Vulkan-Verlag, Essen, 63:24–38Google Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2008

Authors and Affiliations

  • J. C. Aurich
    • 1
  • D. Biermann
    • 2
  • H. Blum
    • 3
  • C. Brecher
    • 4
  • C. Carstensen
    • 5
  • B. Denkena
    • 6
  • F. Klocke
    • 4
  • M. Kröger
    • 7
  • P. Steinmann
    • 8
  • K. Weinert
    • 2
  1. 1.Institute for Manufacturing Technology and Production SystemsUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Institute of Machining TechnologyDortmund University of TechnologyDortmundGermany
  3. 3.Institute of Applied MathematicsDortmund University of TechnologyDortmundGermany
  4. 4.Laboratory for Machine Tools and Production EngineeringRWTH Aachen UniversityAachenGermany
  5. 5.Department of MathematicsHumboldt University BerlinBerlinGermany
  6. 6.Institute of Production Engineering and Machine ToolsLeibniz Universität HannoverGarbsenGermany
  7. 7.Institute of Machine Elements, Design and ProductionTU Bergakademie FreibergFreibergGermany
  8. 8.Chair of Applied MechanicsUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations