Skip to main content
Log in

On the acting pressure in laser deep drawing

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript


Through the continuing trend of miniaturization new cost efficient and fast methods for processing of small parts are required. In this paper a non-mechanical process for the forming process of micro deep drawing is presented. This new pulsed laser based deep drawing process utilizes an initiated plasma shock wave at the target, which forms the sheet. Several pulses can be applied at one point and therefore high forming degrees can be reached without increasing the energy density. In this article the pressure of the shock wave is measured and optimized. Furthermore laser deep drawing of samples made out of pure aluminum, copper and stainless steel sheet metal with thicknesses of 20 and 50 μm are shown. Finally the forming behavior after single pulses is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others


  1. Geiger M, Kleiner M, Eckstein R, Tiesler N, Engel U (2001) Microforming, CIRP annals, vol 50/2

  2. Peyre R, Fabbro R (1995) Laser shock processing: a review of the physics and applications. Opt Quant Electron 27:1213–1229

    Google Scholar 

  3. Vollertsen F (1996) Laserstrahlumformen—Lasergestützte Formgebung: Verfahren Mechanismen, Modellierung. Meisenbach Verlag, Germany

    Google Scholar 

  4. Schulze Niehoff H, Vollertsen F (2005) Non-thermal laser stretch-forming, sheet metal 2005. Adv Mater Res 6–8:433–440

    Article  Google Scholar 

  5. Hintz G (1997) Untersuchung der Druckerzeugung und der Strahl-Stoff-Wechselwirkung an einem Excimerlaser-System für die Schockbehandlung von Metallen, Dissertation, University of Erlangen-Nurnberg

  6. Eisner K (1998) Prozeßtechnologische Grundlagen zur Schockverfestigung von metallischen Werkstoffen mit einem kommerziellen Excimerlaser, Dissertation, University of Erlangen-Nurnberg

  7. Hugenschmidt M (1997) Absorptionsverhalten und Energie-übertragung gepulster Laserstrahlung auf Werkstoffe, Laser—Von der Wissenschaft zur Anwendung Hrsg. Jüptner W, BIAS-Verlag, Bremen

    Google Scholar 

  8. Richter E, Feyerabend T (2002)Grundlagen der Strahlentherapie, Springer, Berlin, Auflage: 2, 20

  9. Velchev I, Hogervorst W, Ubachs W (1999) Phys J B 32, L511

  10. Hein P (1999) Innenhochdruck-Umformen von Blechpaaren: Modellierung, Prozessauslegung und Prozessführung, Dissertation. University of Erlangen-Nurnberg, Meisenbach Verlag, Germany

    Google Scholar 

  11. Hein P, Vollertsen F (1999) Hydroforming of Sheet Metal Pairs. J Mater Process Technol 87:154–164

    Article  Google Scholar 

  12. Schulze Niehoff H, Hu Z, Vollertsen F (2007) Mechanical and laser micro deep drawing, SheMet 2007. Trans Tech Publications, CH-Zürich, pp 799–806

    Google Scholar 

Download references


This work has been funded by the Leibniz-award Vo 530/7-1 and by the project VO 530/19–1 “Hochgeschwindigkeitsumformen durch laserinduzierte Schockwellen”. The authors would like to thank the Deutsche Forschungsgemeinschaft for their financial support within the project.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hanna Wielage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vollertsen, F., Niehoff, H.S. & Wielage, H. On the acting pressure in laser deep drawing. Prod. Eng. Res. Devel. 3, 1–8 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: