Skip to main content
Log in

Experimental determination of yield loci for magnesium alloy AZ31 under biaxial tensile stress conditions at elevated temperatures

  • Computer Aided Engineering
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The finite element analysis (FEA) has become one of the most relevant and most important tools in fields of sheet metal forming for designing processes and dimensioning parts. However, reliability and quality of the numerical results strongly depend on the whole FE-model and especially on the modeling of the material behavior, which shows wide impact on calculated stresses and strains of sheet metal parts. Therefore, the experimental determination of characteristic material data concerning anisotropic and temperature-effects is essential. In this paper the influence of temperature on the yielding and the hardening behavior of the magnesium sheet metal alloy AZ31 are investigated for different uniaxial and biaxial stress conditions. For that purpose an experimental setup has been developed at the Chair of Manufacturing Technology (LFT) which enables biaxial tensile testing of sheet metal. Yield loci of AZ31 are determined as a function of temperature and they are based on solely measurement data of the forming process itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hill R (1948) A theory of the yielding and plastic flow of anisotropic materials. Proc R Soc A Math Phys Eng Sci 404(1368):193–197

    Google Scholar 

  2. Hill R (1990) Constitutive modelling of orthotropic plasticity in sheet metals. J Mech Phys Solids 38:405–417

    Article  MATH  MathSciNet  Google Scholar 

  3. Hosford WF (1972) A generalized isotropic yield criterion. J Appl Mech 39:607–609

    Google Scholar 

  4. Barlat F, Lian J (1989) Plastic behaviour and stretchability of sheet metals (Pt. I): a yield function for orthotropic sheet under plane stress conditions. Int J Plast 5(1):51–66

    Article  Google Scholar 

  5. Barlat F, Lege DJ, Brem JC (1991) A six-component yield function for anisotropic materials. Int J Plast 7(7):693–712

    Article  Google Scholar 

  6. Cazacu O, Barlat F (2004) A new yield criterion for the description of anisotropy and strength differential effects in pressure-insensitive metals. Int J Plast 20(11):2027–2045

    Article  MATH  Google Scholar 

  7. Shiratori E, Ikegami K (1967) A new biaxial tensile testing machine with flat specimen. Bull Tokyo Inst Technol 82:105–118

    Google Scholar 

  8. Kreißig R (1982) Theoretische und experimentelle Untersuchungen zur plastischen Anisotropie. Dissertation, Technical University Karl-Marx-Stadt

  9. Müller W (1996) Beitrag zur Charakterisierung von Blechwerkstoffen unter mehrachsiger Beanspruchung. Dissertation, University Stuttgart, Springer, Berlin

  10. Rost HA (1998) Beitrag zur Beschreibung von deformationsinduzierten Anisotropien am Beispiel eines Stahlblechs. Dissertation, Technical University Darmstadt, Shaker, Aachen

  11. Öchsner A (2003) Experimentelle und numerische Untersuchung des elasto-plastischen Verhaltens zellularer Modellwerkstoffe. Dissertation, Friedrich-Alexander-University Erlangen-Nuremberg, VDI Verlag, Düsseldorf

  12. Kuwabara T, Ikeda S, Kuroda T (1998) Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension. J Mater Process Technol 80–81:517–523

    Article  Google Scholar 

  13. Crosby KE, Zhao Y, Pang S-S, Mirshams RA (1998) Yield locus of Al-Li sheets under biaxial conditions. In: Proceedings of the 1998 ASME energy sources technology. ASME, New York, pp 1–7

  14. Hoferlin E, Van Bael A, Van Houtte P, Steyaert G, De Maré C (1998) Biaxial tests on cruciform specimens for the validation of crystallographic yield loci. J Mater Process Technol 80–81:545–550

    Article  Google Scholar 

  15. Geiger M, van der Heyd G, Merklein M, Hußnätter W (2005) Novel concept of experimental setup for characterisation of plastic yielding of sheet metal at elevated temperatures. J Adv Mater Res 6–8:657–664

    Google Scholar 

  16. Hußnätter W, Merklein M, Geiger M (2007) Influence of temperature on yield loci of Magnesium alloy. In: Proceedings of the LANE’07. Meisenbach, Bamberg, pp 519–532

  17. Ghiotti A, Bruschi S, Bariani P (2007) Determination of yield locus of sheet metal at elevated temperatures: a novel concept of experimental set-up. Key Eng Mater 344:97–104

    Article  Google Scholar 

  18. Hußnätter W, Merklein M, Geiger M (2007) Characterization of yielding of sheet metal at elevated temperatures. J Mater Process Technol 191:20–23

    Article  Google Scholar 

  19. Kuwabara T, van Bael A, Iizuka E (2002) Measurement and analysis of the Bauschinger effect and work hardening characteristics of steel sheets with different r-values. Acta Mater 50:3717–3729

    Article  Google Scholar 

  20. Merklein M, Hußnätter W, Geiger M (2008) Characterization of yielding behavior of sheet metal under biaxial stress condition at elevated temperatures. Ann CIRP 57:1 (accepted)

    Google Scholar 

  21. Hußnätter W (2007) Detection of the real plastification in a biaxial tension test. Key Eng Mater 344:105–112

    Google Scholar 

  22. Doege E, Droeder K (2002) Forming of magnesium sheet metal. Prod Eng IX(2):19–22

    Google Scholar 

  23. Hull D, Bacon DJ (1984) Introduction to dislocations. Butterworth-Heinemann, Oxford

    Google Scholar 

  24. Redecker M, Roll K, Hong S, Hoffmann H (2006) Experimental identification and numerical verification of the process window in the warm forming of magnesium sheet metal (AZ31). In: Proceedings of IDDRG’06. pp 311–318

Download references

Acknowledgments

The investigations and results presented in this paper are carried out from the research project “Characterization of yielding of magnesium sheet at elevated temperatures” which is sponsored by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Hußnätter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiger, M., Merklein, M., Hußnätter, W. et al. Experimental determination of yield loci for magnesium alloy AZ31 under biaxial tensile stress conditions at elevated temperatures. Prod. Eng. Res. Devel. 2, 303–310 (2008). https://doi.org/10.1007/s11740-008-0098-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-008-0098-0

Keywords

Navigation