Production Engineering

, Volume 1, Issue 4, pp 371–379 | Cite as

Economic application of virtual commissioning to mechatronic production systems

  • Gunther Reinhart
  • Georg WünschEmail author
Computer Aided Engineering


The interaction of heterogenous control hard and software plays a key role in enabling mechatronic production systems to become flexible and agile systems. Nevertheless, control software engineering still tends to be the last step within the development process. To a large extent it is carried out during the commissioning phase of the production ramp-up. On the first hand this leads to a loss of time and quality as well as to a loss of reputation and future orders on the second hand. A method that is referred to as Virtual Commissioning tries to overcome this situation. The aim is to enable control software engineering to, both take over the initiative in system design and to perform important activities earlier in the design process of production equipment. In this paper, the technological and economical scalability of Virtual Commissioning is analyzed. Based on the analysis, a technical concept for a scalable simulation environment is presented. The paper concludes with a new method for the economic application of Virtual Commissioning.


Computer aided engineering Virtual Commissioning Mechatronic production systems 


  1. 1.
    Smith BC (1998) World class vehicle launch timing: the conclusion. Automotvie Manufacturing & Production, 11/98Google Scholar
  2. 2.
    Wiendahl H-P, Hegenscheidt M, Winkler H (2002) Anlaufrobuste produktionssysteme. wt Werkstattstechnik Jahrgang 92, 2002 H. 11/12, pp 650–655Google Scholar
  3. 3.
    Eversheim W, Koerth D, Gentzcke J (1990) Gesellschaft Produktionstechnik: Inbetriebnahme komplexer Maschinen und Anlagen: Strategien und Praxisbeispiele zur Rationalisierung in der Einzel- und Kleinserienproduktion. Düsseldorf: VDI-VerlGoogle Scholar
  4. 4.
    Glas J (1993) Standardisierter Aufbau anwendungsspezifischer Zellenrechnersoftware: mit 80 Abb. Berlin [u.a.]: Springer (iwb-Forschungsberichte; 61)Google Scholar
  5. 5.
    NN (1997) VDW-Bericht : Abteilungsübergreifende Projektierung komplexer Maschinen und Anlagen. Aachen: Verein Deutscher WerkzeugmaschinenherstellerGoogle Scholar
  6. 6.
    Bender K, Albert J (1999) Echtzeitsimulation zum Test von Maschinensteuerungen: München: Utz (In: Informationstechnik im Maschinenwesen)Google Scholar
  7. 7.
    Isermann R (1997) Mechatronic Systems – A Challenge for Control Engineering. In: Proceedings of the American Control Conference, Albu-querque, New Mexico, USAGoogle Scholar
  8. 8.
    Jayaram M, Chen L (2003) Functional modeling of complex mechatronic systems. In: Proceedings of ASME 2003 design engineering technical conferences and computers and information in engineering conference. 2–6 September 2003. Chicago, Illinois, USAGoogle Scholar
  9. 9.
    Li R-Q, Zou H-J (2005) A new symbolic representation method to support conceptual design of mechatronic system. Int J Adv Manuf Technol 25:619–627CrossRefGoogle Scholar
  10. 10.
    Qin S, Harrison R, West AA (2005) Study of 3D simulation modeling for supporting a plug-and-play, distributed control system. Int J Agile Manuf 8(1):101–108Google Scholar
  11. 11.
    Pritschow G, Rogers C, Röck S (2002) Echtzeitfähige Maschinenmodelle. wt Werkstattstechnik Jahrgang 92, 2002 H. 5, pp 187–193Google Scholar
  12. 12.
    Dietrich U, Schulz T, Yaramanoglu N (2002) Bringing real and virtual worlds together in the manufacturing process. J Adv Manuf 1(1):51–65CrossRefGoogle Scholar
  13. 13.
    Berger A (2005) Virtuelle Inbetriebnahme eines Bearbeitungszentrums. In: Zaeh MF, Reinhart G (Hrsg.): Seminarberichte iwb 78: Mechatronik—Trends in der interdisziplinären Entwicklung von Werkzeugmaschinen. München: Utz 2005Google Scholar
  14. 14.
    Heinrich S, Wortmann D (2004) Virtuelle Inbetriebnahme: Entwicklung von Layout- und Steuerungskonzepten mit Hilfe von Simulation. In: 2. Symposium, “Digitale Fabrik”, Leipzig, JuniGoogle Scholar
  15. 15.
    Römberg S (2004) Virtuelle Inbetriebnahme:Innovative Entwicklungen im Bereich der Digitalen Fabrik. In: 2. Symposium “Digitale Fabrik”, Leipzig, Juni 2004Google Scholar
  16. 16.
    Zhang D, Zhang H-C (1999) A simulation study of an object-oriented integration test bed for process planning and production scheduling. Int J Flexible Manuf Syst 11(1):19–35CrossRefGoogle Scholar
  17. 17.
    Zäh MF, Wünsch G, Pörnbacher, C, Ehrenstrasser M (2003) Emerging virtual machine tools. In: 29th design automation conference. Chicago, IllinoisGoogle Scholar
  18. 18.
    Min B-K, Huang Z, Pasek ZJ, Yip-Hoi D, Husted F, Marker S (2002) Integration of real-time control simulation to a virtual manufacturing environment. Int J Adv Manuf Syst 1(1):67–87, Special Issue on Virtual ManufacturingCrossRefGoogle Scholar
  19. 19.
    Milberg J (1992) Von CAD/CAM zu CIM: Leitfaden zum Erfolg, Berlin [u.a.], Springer (CIM-Fachmann)Google Scholar
  20. 20.
    Zäh MF, Wünsch G, Hensel T, Lindworsky A (2006) Nutzen der virtuellen Inbetriebnahme: Ein Experiment. ZWF-Zeitschrift für wirtschaftlichen Fabrikbetrieb 101(10)Google Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2007

Authors and Affiliations

  1. 1.iwb, TU MünchenGarchingGermany

Personalised recommendations