Skip to main content

Advertisement

Log in

Haematological sequelae in the post-acute phase of symptomatic SARS-CoV-2 infection

  • IM - ORIGINAL
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Many patients surviving SARS-CoV-2 infection suffer from long-term symptoms (long COVID or post COVID) such as shortness of breath, fatigue, loss of taste or smell and cognitive deterioration. However, few data are available concerning blood cell counts and haematological parameters during the post-COVID period. We analysed haematological data from 83 patients previously admitted to the internal medicine unit of our institution because of symptomatic SARS-CoV-2 infection; all data were obtained within 1–12 months from disease onset. A control group of 70 apparently healthy, age- and sex-matched COVID-19 negative individuals was assessed for comparison. Blood cell counts improved in the post-COVID period, but 81% of patients had persistent abnormalities, compared with 50% in the control group, p < 0.001. Most common haematological findings included anaemia (40%), reduced lymphocyte (43%) or eosinophil counts (38%) and low IgM memory B cells and correlated with advanced age, number of chronic comorbidities, female gender, altered renal function, reduced baseline Hb and procalcitonin concentrations and increased RDW. Data on lymphocytes and IgM memory B cells show that impaired immune responses may persist for up to one year in the post-COVID period, possibly contributing to long-term symptoms, especially in female patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Raw data are not publicly available, but can be shared upon request to the corresponding author.

References

  1. Taneri PE, Gómez-Ochoa SA, Llanaj E et al (2020) Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis. Eur J Epidemiol 35:763–773. https://doi.org/10.1007/s10654-020-00678-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhou M, Qi J, Li X et al (2020) The proportion of patients with thrombocytopenia in three human-susceptible coronavirus infections: a systematic review and meta-analysis. Br J Haematol 189:438–441. https://doi.org/10.1111/bjh.16655

    Article  CAS  PubMed  Google Scholar 

  3. Chen W, Li Z, Yang B et al (2020) Delayed-phase thrombocytopenia in patients with coronavirus disease 2019 (COVID-19). Br J Haematol 190:179–184. https://doi.org/10.1111/bjh.16885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang D, Hu B, Hu C et al (2020) Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323:1061–1069. https://doi.org/10.1001/jama.2020.1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang C, Wang Y, Li X et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [published correction appears in Lancet 30 Jan 2020]. Lancet 395:497–506. https://doi.org/10.1016/S0140-6736(20)30183-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bergamaschi G, Borrelli de Andreis F, Aronico N et al (2021) Anemia in patients with Covid-19: pathogenesis and clinical significance [published correction appears in Clin Exp Med 17 Mar 2021]. Clin Exp Med 21:239–246. https://doi.org/10.1007/s10238-020-00679-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xie J, Prats-Uribe A, Feng Q et al (2022) Clinical and genetic risk factors for acute incident venous thromboembolism in ambulatory patients with COVID-19. JAMA Intern Med 182:1063–1070. https://doi.org/10.1001/jamainternmed.2022.385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Al-Samkari H, Karp Leaf RS, Dzik WH et al (2020) COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood 136:489–500. https://doi.org/10.1182/blood.2020006520

    Article  CAS  PubMed  Google Scholar 

  9. Xie Y, Bowe B, Al-Aly Z (2021) Burdens of post-acute sequelae of COVID-19 by severity of acute infection, demographics and health status. Nat Commun 12:6571. https://doi.org/10.1038/s41467-021-26513-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Soriano JB, Murthy S, Marshall JC et al (2022) WHO Clinical Case Definition Working Group on post-COVID-19 condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis 22:e102–e107. https://doi.org/10.1016/S1473-3099(21)00703-9

    Article  CAS  PubMed  Google Scholar 

  11. Nehme M, Braillard O, Chappuis F et al (2021) CoviCare Study Team. Prevalence of symptoms more than seven months after diagnosis of symptomatic COVID-19 in an outpatient setting. Ann Intern Med 174:1252–1260. https://doi.org/10.7326/M21-0878

    Article  PubMed  Google Scholar 

  12. Huang C, Huang L, Wang Y et al (2021) 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 397:220–232. https://doi.org/10.1016/S0140-6736(20)32656-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Durstenfeld MS, Sun K, Tahir P et al (2022) Use of cardiopulmonary exercise testing to evaluate long COVID-19 symptoms in adults: a systematic review and meta-analysis. JAMA Netw Open 5:e2236057. https://doi.org/10.1001/jamanetworkopen.2022.36057

    Article  PubMed  PubMed Central  Google Scholar 

  14. Munblit D, Bobkova P, Spiridonova E et al (2021) Incidence and risk factors for persistent symptoms in adults previously hospitalized for COVID-19. Clin Exp Allergy 51:1107–1120. https://doi.org/10.1111/cea.13997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Al-Aly Z, Xie Y, Bowe B (2021) High-dimensional characterization of post-acute sequelae of COVID-19. Nature 594:259–264. https://doi.org/10.1038/s41586-021-03553-9

    Article  CAS  PubMed  Google Scholar 

  16. Perlis RH, Santillana M, Ognyanova K et al (2022) Prevalence and correlates of long COVID symptoms among US adults. JAMA Netw Open 5:e2238804. https://doi.org/10.1001/jamanetworkopen.2022.38804

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang S, Quan L, Chavarro JE et al (2022) Associations of depression, anxiety, worry, perceived stress, and loneliness prior to infection with risk of post-COVID-19 conditions. JAMA Psychiat 79:1081–1091. https://doi.org/10.1001/jamapsychiatry.2022.2640

    Article  Google Scholar 

  18. Robineau O, Zins M, Touvier M et al (2022) Long-lasting symptoms after an acute COVID-19 infection and factors associated with their resolution. JAMA Netw Open 5:e2240985. https://doi.org/10.1001/jamanetworkopen.2022.40985

    Article  PubMed  PubMed Central  Google Scholar 

  19. Global Burden of Disease Long COVID Collaborators, Wulf HS, Abbafati C et al (2022) Estimated global proportions of individuals with persistent fatigue, cognitive, and respiratory symptom clusters following symptomatic COVID-19 in 2020 and 2021. JAMA 328:1604–1615. https://doi.org/10.1001/jama.2022.18931

    Article  PubMed Central  Google Scholar 

  20. Al-Aly Z, Bowe B, Xie Y (2022) Long COVID after breakthrough SARS-CoV-2 infection. Nat Med 28:1461–1467. https://doi.org/10.1038/s41591-022-01840-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sneller MC, Liang CJ, Marques AR et al (2022) A longitudinal study of COVID-19 sequelae and immunity: baseline findings. Ann Intern Med 175:969–979. https://doi.org/10.7326/M21-4905

    Article  PubMed  Google Scholar 

  22. Peluso MJ, Deveau TM, Munter SE et al (2023) Chronic viral coinfections differentially affect the likelihood of developing long COVID. J Clin Invest 133:e163669. https://doi.org/10.1172/JCI163669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ancona G, Alagna L, Alteri C et al (2023) Gut and airway microbiota dysbiosis and their role in COVID-19 and long-COVID. Front Immunol 14:1080043. https://doi.org/10.3389/fimmu.2023.1080043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iwasaki A, Putrino D (2023) Why we need a deeper understanding of the pathophysiology of long COVID. Lancet Infect Dis 23(4):393–395. https://doi.org/10.1016/S1473-3099(23)00053-1

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pelle MC, Tassone B, Ricchio M et al (2020) Late-onset myocardial infarction and autoimmune haemolytic anaemia in a COVID-19 patient without respiratory symptoms, concomitant with a paradoxical increase in inflammatory markers: a case report. J Med Case Rep 14:246. https://doi.org/10.1186/s13256-020-02595-3

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bhattacharjee S, Banerjee M (2020) Immune thrombocytopenia secondary to COVID-19: a systematic review. SN Compr Clin Med 14:2048–2049. https://doi.org/10.1007/s42399-020-00521-8

    Article  CAS  Google Scholar 

  27. Kalita P, Laishram D, Dey B et al (2021) Secondary hemophagocytic lymphohistiocytosis in post-COVID-19 patients: a report of two cases. Cureus 13(8):e17328. https://doi.org/10.7759/cureus.17328

    Article  PubMed  PubMed Central  Google Scholar 

  28. Roberts LN, Whyte MB, Georgiou L et al (2020) Postdischarge venous thromboembolism following hospital admission with COVID-19. Blood 136:1347–1350. https://doi.org/10.1182/blood.2020008086

    Article  CAS  PubMed  Google Scholar 

  29. Patell R, Bogue T, Koshy A et al (2020) Postdischarge thrombosis and hemorrhage in patients with COVID-19. Blood 136:1342–1346. https://doi.org/10.1182/blood.2020007938

    Article  CAS  PubMed  Google Scholar 

  30. Giannis D, Allen SL, Tsang J et al (2021) Postdischarge thromboembolic outcomes and mortality of hospitalized patients with COVID-19: the CORE-19 registry. Blood 137:2838–2847. https://doi.org/10.1182/blood.2020010529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Deng Z, Zhang M, Zhu T et al (2020) Dynamic changes in peripheral blood lymphocyte subsets in adult patients with COVID-19. Int J Infect Dis 98:353–358. https://doi.org/10.1016/j.ijid.2020.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. World Health Organization (2011) Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. World Health Organization, Geneva

    Google Scholar 

  33. Phipps MM, Barraza LH, LaSota ED et al (2020) Acute liver injury in COVID-19: prevalence and association with clinical outcomes in a large US. Cohort Hepatol 72:807–817. https://doi.org/10.1002/hep.31404

    Article  CAS  Google Scholar 

  34. Inker LA, Eneanya ND, Coresh J et al (2021) New creatinine- and cystatin C-based equations to estimate GFR without race. N Engl J Med 385:1737–1749. https://doi.org/10.1056/NEJMoa2102953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xia W, Tan Y, Hu S, Li C, Jiang T (2022) Predictive value of systemic immune-inflammation index and neutrophil-to-lymphocyte ratio in patients with severe COVID-19. Clin Appl Thromb Hemost 28:10760296221111392. https://doi.org/10.1177/10760296221111391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Outh R, Boutin C, Gueudet P et al (2021) Eosinopenia <100/μL as a marker of active COVID-19: an observational prospective study. J Microbiol Immunol Infect 54:61–68. https://doi.org/10.1016/j.jmii.2020.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carsetti R, Rosado MM, Donnanno S et al (2005) (2005) The loss of IgM memory B cells correlates with clinical disease in common variable immunodeficiency. J Allergy Clin Immunol 115:412–417. https://doi.org/10.1016/j.jaci.2004.10.048

    Article  CAS  PubMed  Google Scholar 

  38. Lenti MV, Luu S, Carsetti R et al (2022) Asplenia and spleen hypofunction. Nat Rev Dis Primers 8:71. https://doi.org/10.1038/s41572-022-00399-x

    Article  PubMed  Google Scholar 

  39. Bergamaschi G, Barteselli C, Del Rio V et al (2022) Impaired respiratory function reduces haemoglobin oxygen affinity in COVID-19. Br J Haematol. https://doi.org/10.1111/bjh.18620

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lenti MV, Borrelli de Andreis F, Pellegrino I et al (2020) Impact of COVID-19 on liver function: results from an internal medicine unit in Northern Italy. Intern Emerg Med 15:1399–1407. https://doi.org/10.1007/s11739-020-02425-w

    Article  PubMed  PubMed Central  Google Scholar 

  41. He W, Ruan Y, Yuan C et al (2019) (2019) High neutrophil-to-platelet ratio is associated with hemorrhagic transformation in patients with acute ischemic stroke. Front Neurol 10:1310. https://doi.org/10.3389/fneur.2019.01310

    Article  PubMed  PubMed Central  Google Scholar 

  42. Qu R, Ling Y, Zhang YH et al (2020) Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19. J Med Virol 92:1533–1541. https://doi.org/10.1002/jmv.25767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Y, Zhao J, Yang L et al (2021) Value of the neutrophil-lymphocyte ratio in predicting COVID-19 severity: a meta-analysis. Dis Markers 2021:2571912. https://doi.org/10.1155/2021/2571912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang C, Deng R, Gou L et al (2020) Preliminary study to identify severe from moderate cases of COVID-19 using combined hematology parameters. Ann Transl Med 8:593. https://doi.org/10.21037/atm-20-3391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Foy BH, Carlson JCT, Reinertsen E et al (2020) Association of red blood cell distribution width with mortality risk in hospitalized adults with SARS-CoV-2 infection. JAMA Netw Open 3:e2022058. https://doi.org/10.1001/jamanetworkopen.2020.22058

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pascual-Figal DA, Bonaque JC, Redondo B et al (2009) Red blood cell distribution width predicts long-term outcome regardless of anaemia status in acute heart failure patients. Eur J Heart Fail 11:840–846. https://doi.org/10.1093/eurjhf/hfp109

    Article  PubMed  Google Scholar 

  47. Sangoi MB, Da Silva SH, da Silva JE, Moresco RN (2011) Relation between red blood cell distribution width and mortality after acute myocardial infarction. Int J Cardiol 146:278–280. https://doi.org/10.1016/j.ijcard.2010.10.084

    Article  PubMed  Google Scholar 

  48. Kim CH, Park JT, Kim EJ et al (2013) An increase in red blood cell distribution width from baseline predicts mortality in patients with severe sepsis or septic shock. Crit Care 17:R282. https://doi.org/10.1186/cc13145

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bazick HS, Chang D, Mahadevappa K, Gibbons FK, Christopher KB (2011) Red cell distribution width and all-cause mortality in critically ill patients. Crit Care Med 39:1913–1921. https://doi.org/10.1097/CCM.0b013e31821b85c6

    Article  PubMed  PubMed Central  Google Scholar 

  50. Weill JC, Reynaud CA (2020) IgM memory B cells: specific effectors of innate-like and adaptive responses. Curr Opin Immunol 63:1–6. https://doi.org/10.1016/j.coi.2019.09.003

    Article  CAS  PubMed  Google Scholar 

  51. Lenti MV, Aronico N, Pellegrino I et al (2020) Depletion of circulating IgM memory B cells predicts unfavourable outcome in COVID-19. Sci Rep 10:20836. https://doi.org/10.1038/s41598-020-77945-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rossi CM, Lenti MV, Merli S, Di Sabatino A (2022) Role of IgM memory B cells and spleen function in COVID-19. Front Immunol 13:889876. https://doi.org/10.3389/fimmu.2022.889876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Koc I, Unalli OS (2022) Eosinophil levels, neutrophil-lymphocyte ratio, and platelet-lymphocyte ratio in the cytokine storm period of patients with COVID-19. Int J Clin Pract 3(2022):7450739. https://doi.org/10.1155/2022/7450739

    Article  CAS  Google Scholar 

  54. Curran FM, Bhalraam U, Mohan M et al (2021) Neutrophil-to-lymphocyte ratio and outcomes inpatients with new-onset or worsening heart failure with reduced and preserved ejection fraction. ESC Heart Fail 8(4):3168–3179. https://doi.org/10.1002/ehf2.13424

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ferro D, Matias M, Neto J et al (2021) Neutrophil-to-lymphocyte ratio predicts cerebral edema and clinical worsening early after reperfusion therapy in stroke. Stroke 52(3):859–867. https://doi.org/10.1161/STROKEAHA.120.032130

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by Fondazione IRCCS Policlinico San Matteo, Pavia, Italy, and by “Rete Aging” as part of the research focused on conditions affecting the elderly. We thank Intermediate srl for proofreading the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Bergamaschi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights statement and Informed consent

As explicitly stated in the Methods section the study was conducted in the respect of the Helsinki declaration and is exempt from the need for informed consent, since only data retrospectively extracted from medical records were used and no additional procedures or investigations were performed for research purposes. No animal studies were performed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergamaschi, G., Barteselli, C., Calabretta, F. et al. Haematological sequelae in the post-acute phase of symptomatic SARS-CoV-2 infection. Intern Emerg Med 19, 125–133 (2024). https://doi.org/10.1007/s11739-023-03459-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-023-03459-6

Keywords

Navigation