Skip to main content

Advertisement

Log in

Liver stiffness measurement identifies subclinical myocardial dysfunction in non-advanced non-alcoholic fatty liver disease patients without overt heart disease

  • IM - ORIGINAL
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Patients with non-advanced non-alcoholic fatty liver disease (NAFLD) have an increased cardiovascular risk. The present study was designed to evaluate the relationship between liver stiffness measurement (LSM) by transient elastography (TE) and myocardial deformation indices of all cardiac chambers in NAFLD patients without overt heart disease. All consecutive NAFLD patients diagnosed with LSM < 12.5 kPa on TE between September 2021 and December 2021 entered the study. All participants underwent blood tests, TE and two-dimensional (2D) transthoracic echocardiography (TTE) implemented with speckle-tracking echocardiography (STE) analysis of left ventricular (LV) global longitudinal strain (GLS), global circumferential strain (GCS) and global radial strain (GRS), right ventricular (RV) GLS, left atrial (LA) total global strain (TGSA) and right atrial (RA) TGSA. Main independent predictors of impaired LV-GLS (defined as absolute value less negative than − 20%) were evaluated. A total of 92 NAFLD patients (54.0 ± 11.1 years, 50% males) were prospectively analyzed. Mean LSM was 6.2 ± 2.4 kPa. Fibroscan results revealed that 76.1% of patients had F0-F1, 5.4% F2 and 18.5% F3 liver fibrosis. Despite normal biventricular systolic function on 2D-TTE, LV-GLS, LV-GCS and LV-GRS, RV-GLS, LA-TGSA and RA-TGSA were reduced in 64.1%, 38.0%, 38.0%, 31.5%, 39.1% and 41.3% of patients, respectively. Body mass index (BMI) (OR 1.76, 95% CI 1.18–2.64), neutrophil-to-lymphocyte ratio (NLR) (OR 4.93, 95% CI 1.15–31.8) and LSM (OR 9.26, 95% CI 2.24–38.3) were independently associated to impaired LV-GLS. BMI ≥ 29.3 kg/m2, NLR ≥ 1.8 and LSM ≥ 5.5 kPa were the best cut-off values for detecting outcome. LSM ≥ 5.5 kPa identifies NAFLD patients with subclinical myocardial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

ALP:

Alkaline phosphatase

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

BMI:

Body mass index

CAP:

Controlled attenuation parameter

CI:

Confidence interval

CO:

Cardiac output

DBP:

Diastolic blood pressure

EaI:

Arterial elastance index

EAT:

Epicardial adipose tissue

EesI:

End-systolic elastance index

eGFR:

Estimated glomerular filtration rate

ESP:

End-systolic pressure

GCS:

Global circumferential strain

GGT:

Gamma-glutamyl transferase

GLS:

Global longitudinal strain

GRS:

Global radial strain

GSA + :

Positive global atrial strain

GSA-:

Negative global atrial strain

HDL:

High-density lipoprotein

HFpEF:

Heart failure with preserved ejection fraction

ICC:

Intraclass correlation coefficient

INR:

International normalized ratio

IQR:

Interquartile range

IVC:

Inferior vena cava

LA:

Left atrial

LAVi:

Left atrial volume index

LDL:

Low-density lipoprotein

LV:

Left ventricular

LVFP:

Left ventricular fillimng pressure

LSM:

Liver stiffness measurement

LVEDVi:

Left ventricular end-diastolic volume index

LVESVi:

Left ventricular end-systolic volume index

LVEF:

Left ventricular ejection fraction

LVMi:

Left ventricular mass index

LVOT:

Left ventricular outflow tract

MACE:

Major adverse cardiovascular events

MAP:

Mean arterial pressure

MAPSE:

Mitral annular plane systolic excursion

NAFLD:

Non-alcoholic fatty liver disease

NLR:

Neutrophil-to-lymphocyte ratio

NPV:

Negative predictive value

OR:

Odds ratio

PPV:

Positive predictive value

RA:

Right atrial

RDW:

Red cell distribution width

ROC:

Receiver operating characteristics

RV:

Right ventricular

RWT:

Relative wall thickness

SBP:

Systolic blood pressure

SPAP:

Systolic pulmonary artery pressure

STE:

Speckle-tracking echocardiography

SVi:

Stroke volume index

TAPSE:

Tricuspid annular plane systolic excursion

TE:

Transient elastography

TGSA:

Total global atrial strain

TPRi:

Total peripheral resistance index

TTE:

Transthoracic echocardiography

VAC:

Ventricular arterial coupling

References

  1. Younossi Z, Koenig A, Abdelatif D et al (2016) Peak epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64:73–84

    Article  PubMed  Google Scholar 

  2. Temple JL, Cordero P, Li J, Nguyen V, Oben JA (2016) A guide to non-alcoholic fatty liver disease in childhood and adolescence. Int J Mol Sci 17:947

    Article  PubMed Central  CAS  Google Scholar 

  3. Kim D, Choi SY, Park EH et al (2012) Nonalcoholic fatty liver disease is associated with coronary artery calcification. Hepatology 56:605–613

    Article  CAS  PubMed  Google Scholar 

  4. VanWagner LB, Ning H, Lewis CE et al (2014) Associations between nonalcoholic fatty liver disease and subclinical atherosclerosis in middle-aged adults: the Coronary Artery Risk Development in Young Adults Study. Atherosclerosis 235:599–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Salah HM, Pandey A, Soloveva A et al (2021) Relationship of nonalcoholic fatty liver disease and heart failure with preserved ejection fraction. JACC Basic Transl Sci 6:918–932

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wong VW, Vergniol J, Grace Lai-Hung Wong GL et al (2010) Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Hepatology 51(454):462

    Google Scholar 

  7. Petta S, Sebastiani G, Viganò M et al (2021) Monitoring occurrence of liver-related events and survival by transient elastography in patients with nonalcoholic fatty liver disease and compensated advanced chronic liver disease. Clin Gastroenterol Hepatol 19:806–815

    Article  PubMed  Google Scholar 

  8. Konstam MA, Abboud FM (2017) Ejection fraction: misunderstood and overrated (changing the paradigm in categorizing heart failure). Circulation 135:717–719

    Article  PubMed  PubMed Central  Google Scholar 

  9. Potter E, Marwick TH (2018) Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. JACC Cardiovasc Imaging 11:260–274

    Article  PubMed  Google Scholar 

  10. Sonaglioni A, Lonati C, Lombardo M et al (2019) Incremental prognostic value of global left atrial peak strain in women with new-onset gestational hypertension. J Hypertens 37:1668–1675

    Article  CAS  PubMed  Google Scholar 

  11. Sonaglioni A, Nicolosi GL, Granato A et al (2021) Reduced myocardial strain parameters in subjects with pectus excavatum: impaired myocardial function or methodological limitations due to chest deformity? Semin Thorac Cardiovasc Surg 33:251–262

    Article  PubMed  Google Scholar 

  12. Sonaglioni A, Nicolosi GL, Lombardo M et al (2021) Influence of chest conformation on myocardial strain parameters in healthy subjects with mitral valve prolapse. Int J Cardiovasc Imaging 37:1009–1022

    Article  PubMed  Google Scholar 

  13. Karabay CY, Kocabay G, Kalayci A et al (2014) Impaired left ventricular mechanics in nonalcoholic fatty liver disease: a speckle-tracking echocardiography study. Eur J Gastroenterol Hepatol 26:325–331

    Article  PubMed  Google Scholar 

  14. Baktır AO, Şarlı B, Altekin RE et al (2015) Non alcoholic steatohepatitis is associated with subclinical impairment in left ventricular function measured by speckle tracking echocardiography. Anatol J Cardiol 15:137–142

    Article  PubMed  CAS  Google Scholar 

  15. VanWagner LB, Wilcox JE, Colangelo LA et al (2015) Association of nonalcoholic fatty liver disease with subclinical myocardial remodeling and dysfunction: a population-based study. Hepatology 62:773–783

    Article  CAS  PubMed  Google Scholar 

  16. Zamirian MMD, Samiee EMD, Moaref AMD et al (2018) Assessment of subclinical myocardial changes in non-alcoholic fatty liver disease: a case-control study using speckle tracking echocardiography. Iran J Med Sci 43:466–472

    Google Scholar 

  17. VanWagner LB, Wilcox JE, Ning H et al (2020) Longitudinal association of non-alcoholic fatty liver disease with changes in myocardial structure and function: the CARDIA study. J Am Heart Assoc 9:e014279

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kocabay G, Karabay CY, Colak Y et al (2014) Left atrial deformation parameters in patients with non-alcoholic fatty liver disease: a 2D speckle tracking imaging study. Clin Sci (Lond) 126:297–304

    Article  Google Scholar 

  19. Chang W, Wang Y, Sun L et al (2019) Evaluation of left atrial function in type 2 diabetes mellitus patients with nonalcoholic fatty liver disease by two-dimensional speckle tracking echocardiography. Echocardiography 36:1290–1297

    Article  PubMed  Google Scholar 

  20. Parvanescu T, Vitel A, Sporea I et al (2021) Significant association between left ventricular diastolic dysfunction, left atrial performance and liver stiffness in patients with metabolic syndrome and non-alcoholic fatty liver disease. Diabetes Metab Syndr Obes 14:1535–1545

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sunbul M, Kivrak T, Durmus E et al (2015) Nonalcoholic steatohepatitis score is an independent predictor of right ventricular dysfunction in patients with nonalcoholic fatty liver disease. Cardiovasc Ther 33:294–299

    Article  PubMed  Google Scholar 

  22. Galderisi M, Cosyns B, Edvardsen T et al (2017) Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 18:1301–1310

    Article  PubMed  Google Scholar 

  23. Chalasani N, Younossi Z, Lavine JE et al (2018) The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of liver diseases. Hepatology 67:328–357

    Article  PubMed  Google Scholar 

  24. Degos F, Perez P, Roche B et al (2010) Diagnostic accuracy of FibroScan and comparison to liver fibrosis biomarkers in chronic viral hepatitis: a multicenter prospective study (the FIBROSTIC study). J Hepatol 53:1013–1021

    Article  PubMed  Google Scholar 

  25. Zarski JP, Sturm N, Guechot J et al (2012) Comparison of nine blood tests and transient elastography for liver fibrosis in chronic hepatitis C: the ANRS HCEP-23 study. J Hepatol 56:55–62

    Article  PubMed  Google Scholar 

  26. Levey AS, Bosch JP, Lewis JB et al (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461–470

    Article  CAS  PubMed  Google Scholar 

  27. Castera L, Forns X, Alberti A (2008) Non-invasive evaluation of liver fibrosis using transient elastography. J Hepatol 48:835–847

    Article  PubMed  Google Scholar 

  28. Karlas T, Petroff D, Sasso M et al (2017) Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol 66:1022–1030

    Article  PubMed  Google Scholar 

  29. Lim JK, Flamm SL, Singh S et al (2017) American gastroenterological association institute guideline on the role of elastography in the evaluation of liver fibrosis. Gastroenterology 152:1536–1543

    Article  PubMed  Google Scholar 

  30. Wu S, Yang Z, Zhou J et al (2019) Systematic review: diagnostic accuracy of non-invasive tests for staging liver fibrosis in autoimmune hepatitis. Hepatol Int 13:91–101

    Article  PubMed  Google Scholar 

  31. Wong VW, Irles M, Wong GL et al (2019) Unified interpretation of liver stiffness measurement by M and XL probes in non-alcoholic fatty liver disease. Gut 68:2057–2064

    Article  CAS  PubMed  Google Scholar 

  32. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39

    Article  PubMed  Google Scholar 

  33. Nagueh SF, Smiseth OA, Appleton CP et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29:277–314

    Article  PubMed  Google Scholar 

  34. Rudski LG, Lai WW, Afilalo J et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713

    Article  PubMed  Google Scholar 

  35. Nishimura RA, Otto CM, Bonow RO et al (2017) 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 135:e1159–e1195

    Article  PubMed  Google Scholar 

  36. Iacobellis G, Willens HJ, Barbaro G, Sharma AM (2008) Threshold values of high-risk echocardiographic epicardial fat thickness. Obesity (Silver Spring) 16:887–892

    Article  Google Scholar 

  37. Redfield MM, Jacobsen SJ, Borlaug BA et al (2005) Age- and gender-related ventricular-vascular stiffening: a community-based study. Circulation 112:2254–2262

    Article  PubMed  Google Scholar 

  38. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K (1983) Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 245:H773–H780

    CAS  PubMed  Google Scholar 

  39. Chantler PD, Lakatta EG (1985) Najjar SS (2008) Arterial-ventricular coupling: mechanistic insights into cardiovascular performance at rest and during exercise. J Appl Physiol 105:1342–1351

    Article  Google Scholar 

  40. Hill LK, Sollers Iii JJ, Thayer JF (2013) Resistance reconstructed estimation of total peripheral resistance from computationally derived cardiac output – biomed 2013. Biomed Sci Instrum 49:216–223

    PubMed  PubMed Central  Google Scholar 

  41. Muraru D, Onciul S, Peluso D et al (2016) Sex- and method-specific reference values for right ventricular strain by 2-dimensional speckle-tracking echocardiography. Circ Cardiovasc Imaging 9:e003866

    Article  PubMed  Google Scholar 

  42. Sonaglioni A, Vincenti A, Baravelli M et al (2019) Prognostic value of global left atrial peak strain in patients with acute ischemic stroke and no evidence of atrial fibrillation. Int J Cardiovasc Imaging 35:603–613

    Article  PubMed  Google Scholar 

  43. Sugimoto T, Dulgheru R, Bernard A et al (2017) Echocardiographic reference ranges for normal left ventricular 2D strain: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging 18:833–840

    Article  PubMed  Google Scholar 

  44. Wang TKM, Grimm RA, Rodriguez LL et al (2021) Defining the reference range for right ventricular systolic strain by echocardiography in healthy subjects: a meta-analysis. PLoS ONE 16:e0256547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH (2013) Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr 26:185–191

    Article  PubMed  Google Scholar 

  46. Sugimoto T, Robinet S, Dulgheru R et al (2018) Echocardiographic reference ranges for normal left atrial function parameters: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging 19:630–638

    Article  PubMed  Google Scholar 

  47. Brand A, Bathe M, Hübscher A et al (2018) Normative reference data, determinants, and clinical implications of right atrial reservoir function in women assessed by 2D speckle-tracking echocardiography. Echocardiography 35:1542–1549

    Article  PubMed  Google Scholar 

  48. Suto M, Tanaka H, Mochizuki Y et al (2017) Impact of overweight on left ventricular function in type 2 diabetes mellitus. Cardiovasc Diabetol 16:145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ng ACT, Prevedello F, Dolci G et al (2018) Impact of diabetes and increasing body mass index category on left ventricular systolic and diastolic function. J Am Soc Echocardiogr 31:916–925

    Article  PubMed  Google Scholar 

  50. Kishi S, Armstrong AC, Gidding SS et al (2014) Association of obesity in early adulthood and middle age with incipient left ventricular dysfunction and structural remodeling: the CARDIA study (Coronary Artery Risk Development in Young Adults). JACC Heart Fail 2:500–508

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wang YC, Liang CS, Gopal DM et al (2015) Preclinical systolic and diastolic dysfunctions in metabolically healthy and unhealthy obese individuals. Circ Heart Fail 8:897–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dini FL, Fabiani I, Miccoli M et al (2018) Prevalence and determinants of left ventricular diastolic dysfunction in obese subjects and the role of left ventricular global longitudinal strain and mass normalized to height. Echocardiography 35:1124–1131

    Article  PubMed  Google Scholar 

  53. Blomstrand P, Sjöblom P, Nilsson M et al (2018) Overweight and obesity impair left ventricular systolic function as measured by left ventricular ejection fraction and global longitudinal strain. Cardiovasc Diabetol 17:113

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hoang K, Zhao Y, Gardin JM et al (2015) LV mass as a predictor of CVD events in older adults with and without metabolic syndrome and diabetes. JACC Cardiovasc Imaging 8:1007–1015

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lee HJ, Kim HL, Lim WH et al (2019) Subclinical alterations in left ventricular structure and function according to obesity and metabolic health status. PLoS ONE 14:e0222118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alaaeddine N, Sidaoui J, Hilal G et al (2012) TNF-α messenger ribonucleic acid (mRNA) in patients with nonalcoholic steatohepatitis. Eur Cytokine Netw 23:107–111

    Article  CAS  PubMed  Google Scholar 

  57. Leite NC, Salles GF, Cardoso CR, Villela-Nogueira CA (2013) Serum biomarkers in type 2 diabetic patients with non-alcoholic steatohepatitis and advanced fibrosis. Hepatol Res 43:508–515

    Article  CAS  PubMed  Google Scholar 

  58. Yilmaz H, Yalcin KS, Namuslu M et al (2015) Neutrophil-lymphocyte ratio (NLR) could be better predictor than C-reactive protein (CRP) for liver fibrosis in non-alcoholic steatohepatitis (NASH). Ann Clin Lab Sci 45:278–286

    CAS  PubMed  Google Scholar 

  59. Abdel-Razik A, Mousa N, Shabana W et al (2016) A novel model using mean platelet volume and neutrophil to lymphocyte ratio as a marker of nonalcoholic steatohepatitis in NAFLD patients: multicentric study. Eur J Gastroenterol Hepatol 28:e1-9

    Article  CAS  PubMed  Google Scholar 

  60. Alkhouri N, Tamimi TA, Yerian L et al (2010) The inflamed liver and atherosclerosis: a link between histologic severity of nonalcoholic fatty liver disease and increased cardiovascular risk. Dig Dis Sci 55:2644–2650

    Article  PubMed  Google Scholar 

  61. Russo C, Sera F, Jin Z et al (2016) Abdominal adiposity, general obesity, and subclinical systolic dysfunction in the elderly: a population-based cohort study. Eur J Heart Fail 18:537–544

    Article  PubMed  Google Scholar 

  62. Perseghin G (2011) Lipids in the wrong place: visceral fat and nonalcoholic steatohepatitis. Diabetes Care 34:S367–S370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mazurek T, Zhang L, Zalewski A et al (2003) Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108:2460–2466

    Article  PubMed  Google Scholar 

  64. Rao VN, Fudim M, Mentz RJ et al (2020) Regional adiposity and heart failure with preserved ejection fraction. Eur J Heart Fail 22:1540–1550

    Article  CAS  PubMed  Google Scholar 

  65. Khoury T, Mari A, Nseir W et al (2019) Neutrophil-to-lymphocyte ratio is independently associated with inflammatory activity and fibrosis grade in nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 31:1110–1115

    Article  CAS  PubMed  Google Scholar 

  66. Spengler EK, Loomba R (2015) Recommendations for diagnosis, referral for liver biopsy, and treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mayo Clin Proc 90:1233–1246

    Article  PubMed  Google Scholar 

Download references

Funding

This work has been supported by Italian Ministry of Health Ricerca Corrente—IRCCS MultiMedica.

Author information

Authors and Affiliations

Authors

Contributions

AS: conceptualization; data curation; investigation; methodology; software; visualization; writing—original draft. FC, AC, LA, ER: conceptualization; data curation; methodology. GLN, ML, MGR, MV: conceptualization; supervision; validation; writing—review and editing.

Corresponding author

Correspondence to Andrea Sonaglioni.

Ethics declarations

Conflict of interest

We wish to confirm that there are no conflicts of interest associated with this publication. Andrea Sonaglioni declares that he has no conflict of interest. Federica Cerini declares that she has no conflict of interest. Antonio Cerrone declares that he has no conflict of interest. Lorenzo Argiento declares that he has no conflict of interest. Gian Luigi Nicolosi declares that he has no conflict of interest. Elisabetta Rigamonti declares that she has no conflict of interest. Michele Lombardo declares that he has no conflict of interest. Maria Grazia Rumi declares that she has no conflict of interest. Mauro Viganò declares that he has no conflict of interest.

Ethical approval

All procedures were performed according to the ethical standards of the institutional research committee and to the Declaration of Helsinki (1964) and its subsequent amendments or equivalent ethical standards. A written and informed consent was obtained from each participant and the study protocol was authorized the local Ethics Committee.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonaglioni, A., Cerini, F., Cerrone, A. et al. Liver stiffness measurement identifies subclinical myocardial dysfunction in non-advanced non-alcoholic fatty liver disease patients without overt heart disease. Intern Emerg Med 17, 1425–1438 (2022). https://doi.org/10.1007/s11739-022-02966-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-022-02966-2

Keywords

Navigation