Skip to main content
Log in

Prevalence of low skeletal muscle quantity and quality and their associated factors in patients before allogeneic hematopoietic stem cell transplantation

  • IM - ORIGINAL
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Both quality and quantity of skeletal muscle are considered important for prognostic factors and clinical outcomes in solid cancers. However, few studies have examined both quality and quantity of skeletal muscle in patients with hematological malignancies. The aim of the present study was to clarify the prevalence of low skeletal muscle quantity and quality and their associated factors in patients before allogeneic hematopoietic stem cell transplantation (allo-HSCT). Pretransplant plain CT imaging at the third lumber vertebra level was used to measure the psoas muscle mass index (PMI) and the intramuscular adipose tissue content (IMAC) in 113 adult patients (age 47.1 ± 14.6 years) before HSCT. We analyzed the factors associated with PMI and IMAC, respectively. Although 62.8% of all patients had low skeletal muscle mass, only 8% had poor skeletal muscle quality. Multivariable logistic analysis showed that older age [odds ratio (OR) = 2.45, confidence interval (CI) = 1.04–5.76, P = 0.04], male (OR = 4.35, CI = 0.05–0.97, P = 0.04), and low BMI (OR = 0.83, CI = 0.71–0.97, P = 0.02) were independent risk factors for low PMI before HSCT. Only age (≤ 50 years) was significantly associated with muscle quality (modified OR = 0.07, CI = 0.00–0.43, P < 0.01) in univariate analysis. Most patients already showed low skeletal muscle mass before allo-HSCT although skeletal muscle quality was relatively preserved. These results may be indicative of pre-cachexia and may be useful for its long-term management in allo-HSCT patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Huang DD, Chen XX, Chen XY, Wang SL, Shen X, Chen XL, Yu Z, Zhuang CL (2016) Sarcopenia predicts 1-year mortality in elderly patients undergoing curative gastrectomy for gastric cancer: a prospective study. J Cancer Res Clin Oncol 142(11):2347–2356. https://doi.org/10.1007/s00432-016-2230-4

    Article  CAS  PubMed  Google Scholar 

  2. Fukuda Y, Yamamoto K, Hirao M, Nishikawa K, Nagatsuma Y, Nakayama T, Tanikawa S, Maeda S, Uemura M, Miyake M, Hama N, Miyamoto A, Ikeda M, Nakamori S, Sekimoto M, Fujitani K, Tsujinaka T (2016) Sarcopenia is associated with severe postoperative complications in elderly gastric cancer patients undergoing gastrectomy. Gastric Cancer 19(3):986–993. https://doi.org/10.1007/s10120-015-0546-4

    Article  PubMed  Google Scholar 

  3. Oflazoglu U, Alacacioglu A, Varol U, Kucukzeybek Y, Salman T, Taskaynatan H, Yildiz Y, Ozdemir O, Tarhan M (2020) Prevalence and related factors of sarcopenia in newly diagnosed cancer patients. Support Care Cancer 28(2):837–843. https://doi.org/10.1007/s00520-019-04880-4

    Article  PubMed  Google Scholar 

  4. Shiroyama T, Nagatomo I, Koyama S, Hirata H, Nishida S, Miyake K, Fukushima K, Shirai Y, Mitsui Y, Takata S, Masuhiro K, Yaga M, Iwahori K, Takeda Y, Kida H, Kumanogoh A (2019) Impact of sarcopenia in patients with advanced non-small cell lung cancer treated with PD-1 inhibitors: a preliminary retrospective study. Sci Rep 9(1):2447. https://doi.org/10.1038/s41598-019-39120-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aleixo GFP, Shachar SS, Nyrop KA, Muss HB, Malpica L, Williams GR (2020) Myosteatosis and prognosis in cancer: systematic review and meta-analysis. Crit Rev Oncol Hematol 145:102839. https://doi.org/10.1016/j.critrevonc.2019.102839

    Article  CAS  Google Scholar 

  6. Ando T, Fujisawa S, Teshigawara H, Matsumura A, Sakuma T, Suzuki T, Teranaka H, Ogusa E, Ishii Y, Miyashita K, Takahashi H, Nakajima Y, Miyazaki T, Hagihara M, Matsumoto K, Yamazaki E, Nakajima H (2020) Computed tomography-defined sarcopenia: prognostic predictor of nonrelapse mortality after allogeneic hematopoietic stem cell transplantation: a multicenter retrospective study. Int J Hematol 112(1):46–56. https://doi.org/10.1007/s12185-020-02870-5

    Article  CAS  PubMed  Google Scholar 

  7. Armenian SH, Xiao M, Berano Teh J, Lee B, Chang HA, Mascarenhas K, Lee S, Iukuridze A, Xie JJ, Scott JM, Jones LW, Lennie Wong F, Forman SJ, Nakamura R (2019) Impact of sarcopenia on adverse outcomes after allogeneic hematopoietic cell transplantation. J Natl Cancer Inst 111(8):837–844. https://doi.org/10.1093/jnci/djy231

    Article  PubMed  PubMed Central  Google Scholar 

  8. Go SI, Park MJ, Song HN, Kim HG, Kang MH, Lee HR, Kim Y, Kim RB, Lee SI, Lee GW (2016) Prognostic impact of sarcopenia in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Cachexia Sarcopenia Muscle 7(5):567–576. https://doi.org/10.1002/jcsm.12115

    Article  PubMed  PubMed Central  Google Scholar 

  9. Caram MV, Bellile EL, Englesbe MJ, Terjimanian M, Wang SC, Griggs JJ, Couriel D (2015) Sarcopenia is associated with autologous transplant-related outcomes in patients with lymphoma. Leuk Lymphoma 56(10):2855–2862. https://doi.org/10.3109/10428194.2015.1014359

    Article  CAS  PubMed  Google Scholar 

  10. Chu MP, Lieffers J, Ghosh S, Belch AR, Chua NS, Fontaine A, Sangha R, Turner AR, Baracos VE, Sawyer MB (2015) Skeletal muscle radio-density is an independent predictor of response and outcomes in follicular lymphoma treated with chemoimmunotherapy. PLoS ONE 10(6):e0127589. https://doi.org/10.1371/journal.pone.0127589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chu MP, Lieffers J, Ghosh S, Belch A, Chua NS, Fontaine A, Sangha R, Turner RA, Baracos VE, Sawyer MB (2017) Skeletal muscle density is an independent predictor of diffuse large B-cell lymphoma outcomes treated with rituximab-based chemoimmunotherapy. J Cachexia Sarcopenia Muscle 8(2):298–304. https://doi.org/10.1002/jcsm.12161

    Article  PubMed  Google Scholar 

  12. Armenian SH, Chemaitilly W, Chen M, Chow EJ, Duncan CN, Jones LW, Pulsipher MA, Remaley AT, Rovo A, Salooja N, Battiwalla M (2017) National institutes of health hematopoietic cell transplantation late effects initiative: the cardiovascular disease and associated risk factors working group report. Biol Blood Marrow Transplant 23(2):201–210. https://doi.org/10.1016/j.bbmt.2016.08.019

    Article  PubMed  Google Scholar 

  13. Jabbour J, Manana B, Zahreddine A, Saade C, Charafeddine M, Bazarbachi A, Blaise D, El-Cheikh J (2019) Sarcopenic obesity derived from PET/CT predicts mortality in lymphoma patients undergoing hematopoietic stem cell transplantation. Curr Res Transl Med 67(3):93–99. https://doi.org/10.1016/j.retram.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  14. Rier HN, Kharagjitsing H, van Rosmalen J, van Vugt J, Westerweel PE, de Jongh E, Kock M, Levin MD (2020) Prognostic impact of low muscle mass and low muscle density in patients with diffuse large B-cell lymphoma. Leuk Lymphoma 61(7):1618–1626. https://doi.org/10.1080/10428194.2020.1737686

    Article  PubMed  Google Scholar 

  15. Hamaguchi Y, Kaido T, Okumura S, Fujimoto Y, Ogawa K, Mori A, Hammad A, Tamai Y, Inagaki N, Uemoto S (2014) Impact of quality as well as quantity of skeletal muscle on outcomes after liver transplantation. Liver Transpl 20(11):1413–1419. https://doi.org/10.1002/lt.23970

    Article  PubMed  Google Scholar 

  16. Kitajima Y, Hyogo H, Sumida Y, Eguchi Y, Ono N, Kuwashiro T, Tanaka K, Takahashi H, Mizuta T, Ozaki I, Eguchi T, Kimura Y, Fujimoto K, Anzai K, Japan Nonalcoholic Fatty Liver Disease Study G (2013) Severity of non-alcoholic steatohepatitis is associated with substitution of adipose tissue in skeletal muscle. J Gastroenterol Hepatol 28(9):1507–1514. https://doi.org/10.1111/jgh.12227

    Article  PubMed  Google Scholar 

  17. Hamaguchi Y, Kaido T, Okumura S, Kobayashi A, Hammad A, Tamai Y, Inagaki N, Uemoto S (2016) Proposal for new diagnostic criteria for low skeletal muscle mass based on computed tomography imaging in Asian adults. Nutrition 32(11–12):1200–1205. https://doi.org/10.1016/j.nut.2016.04.003

    Article  PubMed  Google Scholar 

  18. Hamaguchi Y, Kaido T, Okumura S, Kobayashi A, Shirai H, Yagi S, Kamo N, Okajima H, Uemoto S (2017) Impact of skeletal muscle mass index, intramuscular adipose tissue content, and visceral to subcutaneous adipose tissue area ratio on early mortality of living donor liver transplantation. Transplantation 101(3):565–574. https://doi.org/10.1097/TP.0000000000001587

    Article  PubMed  Google Scholar 

  19. Kanda Y (2013) Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant 48(3):452–458. https://doi.org/10.1038/bmt.2012.244

    Article  CAS  PubMed  Google Scholar 

  20. DeFilipp Z, Troschel FM, Qualls DA, Li S, Kuklinski MW, Kempner ME, Hochberg E, Chen YB, El-Jawahri A, Fintelmann FJ (2018) Evolution of body composition following autologous and allogeneic hematopoietic cell transplantation: incidence of sarcopenia and association with clinical outcomes. Biol Blood Marrow Transplant 24(8):1741–1747. https://doi.org/10.1016/j.bbmt.2018.02.016

    Article  PubMed  Google Scholar 

  21. Morishita S, Kaida K, Tanaka T, Itani Y, Ikegame K, Okada M, Ishii S, Kodama N, Ogawa H, Domen K (2012) Prevalence of sarcopenia and relevance of body composition, physiological function, fatigue, and health-related quality of life in patients before allogeneic hematopoietic stem cell transplantation. Support Care Cancer 20(12):3161–3168. https://doi.org/10.1007/s00520-012-1460-5

    Article  PubMed  Google Scholar 

  22. Kyle UG, Chalandon Y, Miralbell R, Karsegard VL, Hans D, Trombetti A, Rizzoli R, Helg C, Pichard C (2005) Longitudinal follow-up of body composition in hematopoietic stem cell transplant patients. Bone Marrow Transplant 35(12):1171–1177. https://doi.org/10.1038/sj.bmt.1704996

    Article  CAS  PubMed  Google Scholar 

  23. Kim EY, Kim K, Kim YS, Ahn HK, Jeong YM, Kim JH, Choi WJ (2017) Prevalence of and factors associated with sarcopenia in Korean cancer survivors: based on data obtained by the Korea National Health and Nutrition Examination Survey (KNHANES) 2008–2011. Nutr Cancer 69(3):394–401. https://doi.org/10.1080/01635581.2017.1267776

    Article  PubMed  Google Scholar 

  24. Baracos VE, Martin L, Korc M, Guttridge DC, Fearon KCH (2018) Cancer-associated cachexia. Nat Rev Dis Primers 4:17105. https://doi.org/10.1038/nrdp.2017.105

    Article  PubMed  Google Scholar 

  25. Marcus R, Addison O, Kidde J (2010) Skeletal muscle fat infiltration: impact of age, inactivity, and exercise. J Nutr Health Aging 14:362–366

    Article  CAS  Google Scholar 

  26. Anderson DE, D’Agostino JM, Bruno AG, Demissie S, Kiel DP, Bouxsein ML (2013) Variations of CT-based trunk muscle attenuation by age, sex, and specific muscle. J Gerontol A Biol Sci Med Sci 68(3):317–323. https://doi.org/10.1093/gerona/gls168

    Article  PubMed  Google Scholar 

  27. Yoshimura T, Suzuki H, Takayama H, Higashi S, Hirano Y, Tezuka M, Ishida T, Ishihata K, Nishi Y, Nakamura Y, Imamura Y, Nozoe E, Nakamura N (2020) Impact of preoperative low prognostic nutritional index and high intramuscular adipose tissue content on outcomes of patients with oral squamous cell carcinoma. Cancers (Basel). https://doi.org/10.3390/cancers12113167

    Article  Google Scholar 

  28. Waki Y, Irino T, Makuuchi R, Notsu A, Kamiya S, Tanizawa Y, Bando E, Kawamura T, Terashima M (2019) Impact of preoperative skeletal muscle quality measurement on long-term survival after curative gastrectomy for locally advanced gastric cancer. World J Surg 43(12):3083–3093. https://doi.org/10.1007/s00268-019-05145-1

    Article  PubMed  Google Scholar 

  29. Hamaguchi Y, Kaido T, Okumura S, Ito T, Fujimoto Y, Ogawa K, Mori A, Hammad A, Hatano E, Uemoto S (2015) Preoperative intramuscular adipose tissue content is a novel prognostic predictor after hepatectomy for hepatocellular carcinoma. J Hepatobiliary Pancreat Sci 22(6):475–485. https://doi.org/10.1002/jhbp.236

    Article  PubMed  Google Scholar 

  30. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, Davis M, Muscaritoli M, Ottery F, Radbruch L, Ravasco P, Walsh D, Wilcock A, Kaasa S, Baracos VE (2011) Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12(5):489–495. https://doi.org/10.1016/s1470-2045(10)70218-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SY and GS; methodology: SY; formal analysis: SY; writing—original draft preparation: SY; writing—review and editing: SY, GS and TY.

Corresponding author

Correspondence to Shinya Yoshida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights statement

The study protocol was approved by the Ethics Committee of the Kanazawa University Hospital.

Informed consent

This study waived the requirement for written informed consent due to the retrospective nature of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, S., Sakurai, G. & Yahata, T. Prevalence of low skeletal muscle quantity and quality and their associated factors in patients before allogeneic hematopoietic stem cell transplantation. Intern Emerg Med 17, 451–456 (2022). https://doi.org/10.1007/s11739-021-02828-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-021-02828-3

Keywords

Navigation