Skip to main content

Impact of body mass index on the outcome of elderly patients treated with transcatheter aortic valve implantation

Abstract

Underweight or overweight patients with cardiovascular diseases are associated with different outcomes. However, the data on the relation between body mass index (BMI) and outcomes after transcatheter aortic valve implantation (TAVI) are not homogeneous. The aim of this study was to assess the role of low BMI on short and long-term mortality in real-world patients undergoing TAVI. We retrospectively included patients undergoing TAVI for severe aortic valve stenosis. Patients were classified into three BMI categories: underweight (< 20 kg/m2), normal weight (20–24.9 kg/m2) and overweight/obese (≥ 25 kg/m2). Our primary endpoint was long-term all-cause mortality. The secondary endpoint was 30-day all-cause mortality. A total of 794 patients were included [mean age 82.3 ± 5.3, 53% females]. After a median follow-up of 2.2 years, all-cause mortality was 18.1%. Patients in the lowest BMI group showed a higher mortality rate as compared to those with higher BMI values. At the multivariate Cox regression analysis, as compared to the normal BMI group, BMI < 20 kg/m2 was associated with long-term mortality independently of baseline risk factors and postprocedural adverse events (hazard ratio [HR] 2.29, 95% confidence interval [CI] 1.30–4.03] and HR 2.61, 95% CI 1.48–4.60, respectively). The highest BMI values were found to be protective for both short- and long-term mortality as compared to lower BMI values even after applying the same adjustments. In our cohort, BMI values under 20 kg/m2 were independent predictors of increased long-term mortality. Conversely, the highest BMI values were associated with lower mortality rates both at short- and long-term follow-up.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

BMI:

Body mass index

BSA:

Body surface area

AKI:

Acute kidney injury

TAVI:

Transcatheter aortic valve implantation

CV:

Cardiovascular

AS:

Aortic stenosis

CKD:

Chronic kidney disease

PAD:

Peripheral artery disease

STS:

Society of thoracic surgeons

EF:

Ejection fraction

VARC:

Valvular academic research consortium

CKD-EPI:

Chronic Kidney Disease Epidemiology Collaboration

eGFR:

Estimated glomerular filtration rate

SAVR:

Surgery aortic valve replacement

OAC:

Oral anticoagulation

PM:

Pacemaker

References

  1. 1.

    Lavie CJ, McAuley PA, Church TS, Milani RV, Blair SN (2014) Obesity and cardiovascular diseases: implications regarding fitness, fatness, and severity in the obesity paradox. J Am Coll Cardiol 63(14):1345–1354

    Article  Google Scholar 

  2. 2.

    Nasi M, Patrizi G, Pizzi C, Landolfo M, Boriani G, Dei Cas A et al (2019) The role of physical activity in individuals with cardiovascular risk factors: an opinion paper from Italian Society of Cardiology-Emilia Romagna-Marche and SIC-Sport. J Cardiovasc Med 20(10):631–639

    Article  Google Scholar 

  3. 3.

    Horwich TB, Fonarow GC, Clark AL (2018) Obesity and the obesity paradox in heart failure. Prog Cardiovasc Dis 61(2):151–156

    Article  Google Scholar 

  4. 4.

    Benedetto U, Danese C, Codispoti M (2014) Obesity paradox in coronary artery bypass grafting: myth or reality? J Thorac Cardiovasc Surg 147(5):1517–1523

    Article  Google Scholar 

  5. 5.

    Oreopoulos A, Padwal R, Norris CM, Mullen JC, Pretorius V, Kalantar-Zadeh K (2008) Effect of obesity on short- and long-term mortality postcoronary revascularization: a meta-analysis. Obesity 16(2):442–450

    Article  Google Scholar 

  6. 6.

    Boriani G, Laroche C, Diemberger I, Fantecchi E, Meeder J, Kurpesa M et al (2018) Overweight and obesity in patients with atrial fibrillation: sex differences in 1-year outcomes in the EORP-AF General Pilot Registry. J Cardiovasc Electrophysiol 29(4):566–572

    Article  Google Scholar 

  7. 7.

    Samuels JD, Lui B, White RS (2021) Clearing up the obesity paradox in cardiac surgery. J Cardiothorac Vasc Anesth 35(3):959–960

    Article  Google Scholar 

  8. 8.

    Proietti M, Boriani G (2020) Obesity paradox in atrial fibrillation: implications for outcomes and relationship with oral anticoagulant drugs. Am J Cardiovasc Drugs 20(2):125–137

    Article  Google Scholar 

  9. 9.

    Elagizi A, Kachur S, Lavie CJ, Carbone S, Pandey A, Ortega FB et al (2018) An overview and update on obesity and the obesity paradox in cardiovascular diseases. Prog Cardiovasc Dis 61(2):142–150

    Article  Google Scholar 

  10. 10.

    Andò G, Basile G (2020) Sarcopenia: only one of the domains of frailty in patients undergoing transcatheter aortic valve implantation. J Cardiovasc Med 21(10):787–789

    Article  Google Scholar 

  11. 11.

    Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG et al (2010) Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med 363(17):1597–1607

    CAS  Article  Google Scholar 

  12. 12.

    Leon MB, Smith CR, Mack MJ, Makkar RR, Svensson LG, Kodali SK et al (2016) Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med 374(17):1609–1620

    CAS  Article  Google Scholar 

  13. 13.

    Mack MJ, Leon MB, Thourani VH, Makkar R, Kodali SK, Russo M et al (2019) Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med 380(18):1695–1705

    Article  Google Scholar 

  14. 14.

    Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ et al (2017) 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J 38(36):2739–2791

    Article  Google Scholar 

  15. 15.

    Vahanian A, Alfieri OR, Al-Attar N, Antunes MJ, Bax J, Cormier B et al (2008) Transcatheter valve implantation for patients with aortic stenosis: a position statement from the European Association of Cardio-Thoracic Surgery (EACTS) and the European Society of Cardiology (ESC), in collaboration with the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur J Cardiothorac Surg 34(1):1–8

    Article  Google Scholar 

  16. 16.

    Kappetein AP, Head SJ, Généreux P, Piazza N, van Mieghem NM, Blackstone EH et al (2012) Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document (VARC-2). Eur J Cardiothorac Surg 42(5):S45-60

    Article  Google Scholar 

  17. 17.

    (2000) Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 894:1–253

  18. 18.

    Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP et al (2009) Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr 22(1):1–23 (quiz 101-2)

    Article  Google Scholar 

  19. 19.

    Baumgartner H, Hung J, Bermejo J, Chambers JB, Edvardsen T, Goldstein S et al (2017) Recommendations on the echocardiographic assessment of aortic valve stenosis: a focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr 30(4):372–392

    Article  Google Scholar 

  20. 20.

    Waduud MA, Giannoudi M, Drozd M, Sucharitkul PPJ, Slater TA, Blackman DJ et al (2020) Morphometric and traditional frailty assessment in transcatheter aortic valve implantation. J Cardiovasc Med 21(10):779–786

    Article  Google Scholar 

  21. 21.

    Thourani VH, Keeling WB, Kilgo PD, Puskas JD, Lattouf OM, Chen EP et al (2011) The impact of body mass index on morbidity and short- and long-term mortality in cardiac valvular surgery. J Thorac Cardiovasc Surg 142(5):1052–1061

    Article  Google Scholar 

  22. 22.

    Smith RL 2nd, Herbert MA, Dewey TM, Brinkman WT, Prince SL, Ryan WH et al (2012) Does body mass index affect outcomes for aortic valve replacement surgery for aortic stenosis? Ann Thorac Surg 93(3):742–746 (discussion 6–7)

    Article  Google Scholar 

  23. 23.

    Vaduganathan M, Lee R, Beckham AJ, Andrei AC, Lapin B, Stone NJ et al (2012) Relation of body mass index to late survival after valvular heart surgery. Am J Cardiol 110(11):1667–1678

    Article  Google Scholar 

  24. 24.

    Sannino A, Schiattarella GG, Toscano E, Gargiulo G, Giugliano G, Galderisi M et al (2017) Meta-analysis of effect of body mass index on outcomes after transcatheter aortic valve implantation. Am J Cardiol 119(2):308–316

    Article  Google Scholar 

  25. 25.

    Voigtländer L, Twerenbold R, Schäfer U, Conradi L, Balaban Ü, Bekeredjian R et al (2020) Prognostic impact of underweight (body mass index <20 kg/m(2)) in patients with severe aortic valve stenosis undergoing transcatheter aortic valve implantation or surgical aortic valve replacement (from the German Aortic Valve Registry [GARY]). Am J Cardiol 129:79–86

    Article  Google Scholar 

  26. 26.

    Rabkin SW, Mathewson FA, Hsu PH (1977) Relation of body weight to development of ischemic heart disease in a cohort of young North American men after a 26 year observation period: the Manitoba Study. Am J Cardiol 39(3):452–458

    CAS  Article  Google Scholar 

  27. 27.

    Hubert HB, Feinleib M, McNamara PM, Castelli WP (1983) Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation 67(5):968–977

    CAS  Article  Google Scholar 

  28. 28.

    Manson JE, Colditz GA, Stampfer MJ, Willett WC, Rosner B, Monson RR et al (1990) A prospective study of obesity and risk of coronary heart disease in women. N Engl J Med 322(13):882–889

    CAS  Article  Google Scholar 

  29. 29.

    Koliaki C, Liatis S, Kokkinos A (2019) Obesity and cardiovascular disease: revisiting an old relationship. Metabolism 92:98–107

    CAS  Article  Google Scholar 

  30. 30.

    Bundhun PK, Li N, Chen MH (2015) Does an obesity paradox really exist after cardiovascular intervention?: A systematic review and meta-analysis of randomized controlled trials and observational studies. Medicine 94(44):e1910

    Article  Google Scholar 

  31. 31.

    Galyfos G, Geropapas GI, Kerasidis S, Sianou A, Sigala F, Filis K (2017) The effect of body mass index on major outcomes after vascular surgery. J Vasc Surg 65(4):1193–1207

    Article  Google Scholar 

  32. 32.

    Fonarow GC, Srikanthan P, Costanzo MR, Cintron GB, Lopatin M (2007) An obesity paradox in acute heart failure: analysis of body mass index and inhospital mortality for 108,927 patients in the Acute Decompensated Heart Failure National Registry. Am Heart J 153(1):74–81

    Article  Google Scholar 

  33. 33.

    Corcione N, Testa A, Ferraro P, Morello A, Cimmino M, Albanese M et al (2021) Baseline, procedural and outcome features of patients undergoing transcatheter aortic valve implantation according to different body mass index categories. Minerva Med 112(4):474–482 

  34. 34.

    He S, Fang Z (2020) Incidence, predictors, and outcome of prosthesis–patient mismatch after transcatheter aortic valve replacement: a meta-analysis. Medicine 99(24):e20717

    Article  Google Scholar 

  35. 35.

    Mohty D, Dumesnil JG, Echahidi N, Mathieu P, Dagenais F, Voisine P et al (2009) Impact of prosthesis–patient mismatch on long-term survival after aortic valve replacement: influence of age, obesity, and left ventricular dysfunction. J Am Coll Cardiol 53(1):39–47

    Article  Google Scholar 

  36. 36.

    Panoulas VF, Chandrasekhar J, Busi G, Ruparelia N, Zhang Z, Mehilli J et al (2021) Prevalence, predictors, and outcomes of patient prosthesis mismatch in women undergoing TAVI for severe aortic stenosis: insights from the WIN-TAVI registry. Catheter Cardiovasc Interv 97(3):516–526

    Article  Google Scholar 

  37. 37.

    Leone PP, Regazzoli D, Pagnesi M, Sanz-Sanchez J, Chiarito M, Cannata F et al (2021) Predictors and clinical impact of prosthesis-patient mismatch after self-expandable TAVR in small annuli. JACC Cardiovasc Interv 14(11):1218–1228

    Article  Google Scholar 

  38. 38.

    Stolcova M, Meucci F, Moretti C, Chiriatti N, Marcelli C, Mattesini A et al (2021) Long-term echocardiographic findings after TAVR: 5-year follow-up in 400 consecutive patients. Intern Emerg Med. https://doi.org/10.1007/s11739-021-02689-w

  39. 39.

    Sgura FA, Arrotti S, Magnavacchi P, Monopoli D, Gabbieri D, Banchelli F et al (2020) Kidney dysfunction and short term all-cause mortality after transcatheter aortic valve implantation. Eur J Intern Med 81:32–37

    Article  Google Scholar 

  40. 40.

    Valenti AC, Vitolo M, Manicardi M, Arrotti S, Magnavacchi P, Gabbieri D et al (2021) Red blood cell distribution width in patients undergoing transcatheter aortic valve implantation: implications for outcomes. Int J Clin Pract 75(6):e14153

    Article  Google Scholar 

Download references

Funding

No funding was received for this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Boriani.

Ethics declarations

Conflict of interest

GB received small speaker’s fees from Medtronic, Boston, Biotronik, Boehringer and Bayer outside of the submitted work. The other authors declare no conflict of interest.

Human and animal rights

The study was approved by the local Ethical committee with n°726/2018.

Informed consent

All participants provided informed consent for study participation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sgura, F.A., Arrotti, S., Monopoli, D. et al. Impact of body mass index on the outcome of elderly patients treated with transcatheter aortic valve implantation. Intern Emerg Med (2021). https://doi.org/10.1007/s11739-021-02806-9

Download citation

Keywords

  • Body mass index
  • Obesity paradox
  • Aortic valve stenosis
  • TAVI
  • Cardiovascular disease